
Cassandra
An introduction to data modeling techniques

an evolution of enterprise architecture

Qualifications

!  More than 15 years working on web enabled systems

!  World wide project scope in manufacturing, logistics,
and Social

!  Lead the design, implementation, and deployment of a
global test code control and distribution system

!  Worked with Spring, Java EE, and Oracle DB

Qualificatons

!  AWS ReInvent November 2014

!  Cassandra data modeling course December 2014

!  Cassandra systems admin course January 2015

!  Collaborating with experts in the field

!  Routinely performance test at over 40,000 requests per
minute

!  Cassandra and a micro-service architecture in prod.

!  In prod have sustained over 180,000 requests per minute
during initial data load

Agenda

!  Cassandra and Data modeling

!  Materialized views in Social

!  Titan

!  Architecture

Disclaimer

!  This talk has had less than 1 week of advanced notice

!  Question Everything

Our Journey

!  Evolution to the web influences current thinking
!  Design bias

!  Relational databases
!  ER diagram bias

!  Social is a natural graph

!  Relationships matter

Our Journey

!  Neo4J

!  Nike changes the game

!  Cassandra, Couchbase

!  Titan

!  An emerging enterprise architecture

What is Cassandra

!  NOSQL

!  Open Source

!  Distributed Data Management System

!  Persistence

What is Cassandra

!  NOSQL

!  Open Source

!  Distributed Data Management System

!  Persistence

!  Masterless Cluster

What is Cassandra

!  NOSQL

!  Open Source

!  Distributed Data Management System

!  Persistence

!  Masterless Cluster

!  Linear scalability

What is Cassandra

!  NOSQL

!  Open Source

!  Distributed Data Management System

!  Persistence

!  Masterless Cluster

!  Linear scalability

!  Multiple Data Centers

Hybrid NOSQL Solution

!  Hybrid between key value and a column store

Hybrid NOSQL Solution

!  Hybrid between key value and a column store

!  Column families, aka Table
!  Nothing like a a table in a relational model

Hybrid NOSQL Solution

!  Hybrid between key value and a column store

!  Column families, aka Table
!  Nothing like a a table in a relational model
!  Distributed multi-dimensional map, indexed by a partition

key

Hybrid NOSQL Solution

!  Hybrid between key value and a column store

!  Column families, aka Table
!  Nothing like a a table in a relational model
!  Distributed multi-dimensional map, indexed by a partition

key

!  No Joins

Hybrid NOSQL Solution

!  Hybrid between key value and a column store

!  Column families, aka Table
!  Nothing like a a table in a relational model
!  Distributed multi-dimensional map, indexed by a partition

key

!  No Joins

!  No Sub Query

Hybrid NOSQL Solution

!  Hybrid between key value and a column store

!  Column families, aka Table
!  Nothing like a a table in a relational model
!  Distributed multi-dimensional map, indexed by a partition

key

!  No Joins

!  No Sub Query

!  Does not do much, that’s why its fast and easy to learn

Think differently

!  Relational we model the data

Think differently

!  Relational we model the data

!  Cassandra we model the query
!  Materialized Views

Think differently

!  Relational we model the data

!  Cassandra we model the query
!  Materialized Views

!  The time to execute moves from runtime query to write
time insert and update functions.

Cluster

1
2

3

4
5

6

Data Storage

!  Data is not on every
node

!  Keyspace determines
eventual consistency

CREATE KEYSPACE IF NOT EXISTS social

WITH replication = {

 'class': 'NetworkTopologyStrategy',

 'us-west-2': '3'

};

1
2

3

4
5

6

Keyspace

!  Analogous to a relational schema
!  Collection of tables and indexes

!  Distributed across data centers

!  Defines the number of copies of data that should exist
in a datacenter.

Failure Scenarios
Node down, partitioned Cluster

1
2

3

4
5

6

1
2

3

4
5

6

x

Differing Philosophies

!  In a relational model we discuss ACID
!  Atomic
!  Consistent
!  Isolated
!  Durable

!  In a distributed NOSQL system we discuss CAP Theorem

CAP Theorem

!  In a distributed system we cannot achieve all of
!  Consistency
!  Availability
!  Partition Tolerance

CAP Theorem

!  In a distributed system we cannot achieve all of
!  Consistency

!  Data is consistent on all expected storage nodes

CAP Theorem

!  In a distributed system we cannot achieve all of
!  Consistency

!  Data is consistent on all expected storage nodes
!  Availability

!  Able to handle all data for all requests

CAP Theorem

!  In a distributed system we cannot achieve all of
!  Consistency

!  Data is consistent on all expected storage nodes
!  Availability

!  Able to handle all data for all requests
!  Partition Tolerance

!  Tolerance to the cluster partitioning into separate
units

Cassandra
Data is replicated

!  Across nodes

!  Perhaps across data centers

Eventual Consistency

!  At any given instant data may be inconsistent

!  Eventual is milliseconds

!  Last timestamp for write is the source of truth

Eventual Consistency

!  At any given instant data may be inconsistent
!  Read and write policies

!  Eventual is milliseconds

!  Last timestamp for write is the source of truth
!  Think this through, real examples

Masterless
Every node acts as a coordinator

Basics

!  Download and place Cassadra on the file system.

!  start Cassandra: bin/dse cassandra –f

!  bin/cqlsh

!  describe keyspaces;

!  CREATE KEYSPACE IF NOT EXISTS social…

!  use social;

!  create table socialgraph(left text, label text, right text,
primary key((left, label), right));

Insert records

!  cqlsh:social> insert into socialgraph (left, label, right)
values ('Joe', 'FRIENDS', 'BILL');

!  cqlsh:social> insert into socialgraph (left, label, right)
values ('Joe', 'FRIENDS', 'Amy');

!  cqlsh:social> insert into socialgraph (left, label, right)
values ('Joe', 'FRIENDS', 'Bill');

!  cqlsh:social> insert into socialgraph (left, label, right)
values ('Joe', 'FRIENDS', 'Elaine');

Question

!  How many rows do I have?
o  Zero
o  One
o  Three
o  Four

!  How many friends does Joe have?
o  Zero
o  One
o  Three
o  Four

Question

!  Assuming we actually stored Joe’s friends…

!  In what order will they be returned?

Storage
Notice I have 1 row, no values, a timestamp and a rowkey, notice ‘name’ does
not match any of the column names {left, label, right}, notice the order of the
rows, and that we have BILL and Bill

list socialgraph;

RowKey: Joe:FRIENDS

=> (name=Amy:, value=, timestamp=1426221007206000)

=> (name=BILL:, value=, timestamp=1426220886971000)

=> (name=Bill:, value=, timestamp=1426221027221000)

=> (name=Elaine:, value=, timestamp=1426221068236000)

1 Row Returned.

CQL

cqlsh:social> select * from socialgraph;

 left | label | right

------+---------+--------

 Joe | FRIENDS | Amy

 Joe | FRIENDS | BILL

 Joe | FRIENDS | Bill

 Joe | FRIENDS | Elaine

(4 rows)

Remember this…

Distributed multi-dimensional map, indexed
by a partition key

Drop table socialgraph

CREATE TABLE IF NOT EXISTS socialgraph (left text, label
text,right text,inactive boolean, inactivetimestamp
timestamp, PRIMARY KEY ((left, label), right));

Insertion
where we have columns defined that are beyond the primary key

insert into socialgraph(left, label, right, inactive,
inactivetimestamp) values ('Joe', 'FRIEND', 'Bill', true,
dateof(now()));

select * from socialgraph;

 left | label | right | inactive | inactivetimestamp

------+--------+-------+----------------------------+----------

 Joe | FRIEND | Bill | True | 2015-03-12 23:21:59-0700

Storage wide row

list socialgraph;

RowKey: Joe:FRIEND

=> (name=Bill:, value=, timestamp=1426229082899000)

=> (name=Bill:inactive, value=01, timestamp=1426229082899000)

=> (name=Bill:inactivetimestamp, value=0000014c11e0bb13,
timestamp=1426229082899000)

1 Row Returned.

Insert 2 more friends

!  insert into socialgraph(left, label, right, inactive,
inactivetimestamp) values ('Joe', 'FRIEND', 'Elaine', true,
dateof(now()));

!  insert into socialgraph(left, label, right, inactive,
inactivetimestamp) values ('Joe', 'FRIEND', 'Amy', true,
dateof(now()));

A wide row
RowKey: Joe:FRIEND

=> (name=Amy:, value=, timestamp=1426229747682000)

=> (name=Amy:inactive, value=01, timestamp=1426229747682000)

=> (name=Amy:inactivetimestamp, value=0000014c11eadfe2,
timestamp=1426229747682000)

=> (name=Bill:, value=, timestamp=1426229082899000)

=> (name=Bill:inactive, value=01, timestamp=1426229082899000)

=> (name=Bill:inactivetimestamp, value=0000014c11e0bb13,
timestamp=1426229082899000)

=> (name=Elaine:, value=, timestamp=1426229745885000)

=> (name=Elaine:inactive, value=01, timestamp=1426229745885000)

=> (name=Elaine:inactivetimestamp, value=0000014c11ead8dd,
timestamp=1426229745885000)

1 Row Returned.

Insert a different relationship

insert into socialgraph(left, label, right, inactive) values
('Joe', 'LIKES', 'Football', false);

2 Wide Rows
2 Entity Lists {Friends List, Likes List}

list socialgraph;

RowKey: Joe:LIKES

=> (name=Football:, value=, timestamp=1426230483652000)

=> (name=Football:inactive, value=00, timestamp=1426230483652000)

RowKey: Joe:FRIEND

=> (name=Amy:, value=, timestamp=1426229747682000)

⇒  (name=Amy:inactive, value=01, timestamp=1426229747682000)

… (Remainder elided for brevity)

2 Rows Returned

Cassandra

!  Fixed columns

!  Dynamic columns

!  Narrow or wide rows

!  Wide rows about 100K columns is the practical limit per
row, 2B is the advertised limit.

!  One I/O operation per row

Capacity
Impacted by

!  Nodes in the cluster

!  Partition key – sharding

!  Clustering column(s)

!  Data types and sizes

!  Number of columns per entity

!  Maps, sets, lists, …

!  http://www.sestevez.com/sestevez/CASTableSizer/

Core concepts

!  Partition Key

!  Clustering Column

!  Primary key

Partition key
What happens when I redefine the partition key

From

!  create table socialgraph(left text, label text, right text,
primary key((left, label), right));

To

!  create table socialgraph(left text, label text, right text,
primary key((left), label, right));

Answer

This

 Joe:Friends | Amy | BILL | BILL | Elaine

 Joe:Likes | Fooball

Changes to one wide row ordered by label, right

 Joe | Friend:Amy | Friend:BILL | Friend: Bill
 | Friend:Elaine | Likes:Football

Questions on that?

Wide Rows

!  Essentially a linked list

Wide Rows

!  Essentially a linked list

!  Distributed and accessed by the partition key

Wide Rows

!  Essentially a linked list

!  Distributed and accessed by the partition key

!  Stored and fetched in the order of the clustering
columns

Insight

!  cqlsh> tracing on;

Trace Output

Cool features

!  Store values in a column names, perfectly OK

!  Wide rows – one I/O operation

!  Partition Key
!  Sharding

!  User, friends
!  User, followers
!  User, Groups
!  User, GeneratedContent

!  Clustering column asc, desc

!  TTL

Realities

!  Can only ‘efficiently’ get to data by using the partition
key

!  Can only query data in the order of the partition key
followed by the exact ordering of clustering columns

!  Indexes yes, but…

!  Foreign keys no, Joins no

Indexes

!  Problem
!  Extract a set of relationships from edges where the edges

table is structured as UUID ! Relationship " UUID
!  For each UUID fetch the entity meta data from another

table

This is both an Anti-Pattern and it is aligned with Titan’s

strategy

Findings
13000 Friends Simple Sequential Process
Cost of in application join 10 seconds

Strategy Time

Index lookup 80 Seconds

Table lookup by each 29 seconds

Table lookup batches of 2000 12 seconds

No lookup 2 seconds

Add AKKA / RxJava
Improve Sharding

< 1 second (TBD)

Agenda

!  Data modeling

!  Materialized views in Social

!  Titan

!  Architecture

Viewpoint
Materialized views solve all problems

Implied Materialized views in Social
!  Friends
!  Friends filtered by visibility
!  Friends sorted by Last Name, filtered by visibility
!  Friends sorted by First Name, filtered by visibility
!  …
!  Internationalized

Viewpoint
Is actually not so sweet

Materialized views in Social
!  Friends
!  Friends filtered by visibility
!  Friends sorted by Last Name, filtered by visibility
!  Friends sorted by First Name, filtered by visibility
!  …
!  Internationalized

YUK
!  Marriages, divorces, changes to visibility
!  Drift detection and correction in a changing system*

Agenda

!  Data modeling

!  Materialized views in Social

!  Titan

!  Architecture

Two Viewpoints

!  DataStax Cassandra
!  Everything is a materialized view
!  Denormalize
!  Data redundancy is the solution

!  Titan
!  Everything can be represented as a graph
!  7 tables will do it

Titan

!  Backed by Cassandra (other options)

!  Astyanax DB Driver
!  THRIFT (WITH COMPACT STORAGE)
!  Downsides: data is in a blob

!  cqlsh> describe keyspace titan;

Titan Tables

!  Edgeindex

!  Edgestore

!  Edgestore_lock_

!  System_properties

!  Titan_ids

!  Vertexindex

!  Vertexindex_lock_

Titan Core

!  Two key tables Entity and Entity Relationship
!  Vertexes (Neo4J calls nodes)

!  Could be done several ways

!  Key value: key to object (blob)
!  Dynamic columns: object mapped to key value pairs

!  Edges
!  Node1 ! Friend " Node2
!  Relationships are a first class entity

!  Pixie Dust

!  No materialized views. In application joins.

TinkerPop

JUnit

!  Titan JUnit Tests

!  shall7m2:~ shall7$ cd dse

!  shall7m2:dse shall7$ bin/dse cassandra -f

Titan

!  Purchased by DataStax

!  Being incorporated into DataStax Enterprise

Titan

!  We did not choose Titan
!  Time to market
!  Complexity
!  Data in blobs

Downsides

!  Materialized Views
!  Update and maintenance challenges

!  Application Joins
!  Slow, perhaps
!  Functional Reactive Parallel: RxJava
!  Massively parallel: Spark, AKKA
!  Solr

Agenda

!  Data modeling

!  Materialized views in Social

!  Titan

!  Architecture

Pragmatic

Emergent Architecture

!  Cassandra

!  Solr Cassandra

!  Spark Cassandra

!  Spark Cassandra Graphx

!  Spark Job Server

Multi-Region With Analytics
All nodes backed by Cassandra

Solr Cassandra Spark Cassandra Solr

US Spark EU

REST RESTAnalytics

Multi-Region With Graph
All nodes backed by Cassandra

Spark Cassandra Solr

EU

REST

Spark With Graphx

Spark

REST

Spark Job Server

Failover

Spark Job Server

Graphx

Summary

!  Cassandra fastest runtime solution is materialized views

Summary

!  Cassandra fastest runtime solution is materialized views

!  Materialized views are:
!  Lists of domain objects

Summary

!  Cassandra fastest runtime solution is materialized views

!  Materialized views are:
!  Lists of domain objects
!  Sharded across the cluster using the partition key

Summary

!  Cassandra fastest runtime solution is materialized views

!  Materialized views are:
!  Lists of domain objects
!  Sharded across the cluster using the partition key
!  Sorted by clustering column(s)

Summary

!  Cassandra fastest runtime solution is materialized views

!  Materialized views are:
!  Lists of domain objects
!  Sharded across the cluster using the partition key
!  Sorted by clustering column(s)
!  Accessed by the partition key, then by clustering columns

Summary

!  Cassandra fastest runtime solution is materialized views

!  Materialized views are:
!  Lists of domain objects
!  Sharded across the cluster using the partition key
!  Sorted by clustering column(s)
!  Accessed by the partition key, then by clustering columns
!  Potentially data repeated throughout many views

Summary

!  Titan addresses enterprise data storage using Cassandra
without materialized views.

Summary

!  Titan addresses enterprise data storage using Cassandra
without materialized views.

!  Cassandra by itself is not equivalent to a relational
database.

Summary

!  Titan addresses enterprise data storage using Cassandra
without materialized views.

!  Cassandra by itself is not equivalent to a relational
database.
!  Materialized views obviate many relational db features

Summary

!  Titan addresses enterprise data storage using Cassandra
without materialized views.

!  Cassandra by itself is not equivalent to a relational
database.
!  Materialized views obviate many relational db features
!  Finding the partition key may require augmentation with

search, such as Solr, Elastic Search, etc.

Summary

!  Cassandra natively supports data replication across data
centers.

Summary

!  Cassandra natively supports data replication across data
centers.
!  Multi-region solutions

Summary

!  Cassandra natively supports data replication across data
centers.
!  Multi-region solutions
!  Same technique can be used to replicate across Cassandra,

Solr and Cassandra, Spark and Cassanda clusters.

Summary

!  Cassandra natively supports data replication across data
centers.
!  Multi-region solutions
!  Same technique can be used to replicate across Cassandra,

Solr and Cassandra, Spark and Cassanda clusters.
!  Combine across one region or many

Supported Solutions

!  DataStax provides an integrated solution with
professional support
!  Cassandra, Solr, Spark
!  Integrated
!  Integration with Titan coming

Intrigued, want to know more

Steven.Hall@nike.com

