
1

Application-Fixture-Test: 

Building a Robust UI-Testing Architecture

(Or How to Stop Worrying and 

Love Automated UI-Testing)

Phil Quitslund

Rob Ryan
{phil_quitslund, rob_ryan}@instantiations.com

UI Testing in the Wild



2

UI Testing in the Wild

UI Tests in practice are undisciplined, 

untrusted and burdensome.

Tests are generally hard to write, hard 

to understand, and hard to maintain.

In the worst cases, tests are delivering 

very little value.

Root Causes

Tests are often doing the wrong things

(in the wrong ways).

Tests are often written by (and/or for) 

the wrong people.



3

Proposed Solution

An architecture that partitions UI testing into two 
activities.

Writing Tests: Testers write tests in an 
application-specific test language.

Writing Fixtures: Developers build fixtures that 
make up the primitives in the test language.

Tests and fixtures are first class development 
artifacts. 

Application/Fixture/Test

Fluent

Fixture

Test

Test

Helper

Helper

Helper

Literate

Tests

Test

… …

Application

UI

API

Tester

BA

Developer



4

Example: Creating a Project (Free)

@Test

public void verifyProjectCreation() {

click(menu("File/New/Other..."));

waitFor(shellShowing("New"));

click(tree("General/Project"));

click(button("Next"));

enter("MyProject");

click(button("Finish"));

waitFor(shellDisposed("New Project"));

assertThat(projectExists("MyProject"));

}

Create Project Test (w/o Fixture)

Example: Creating a Project (Fixture)

public static void createProject(String projectName) {

click(menu("File/New/Other..."));

waitFor(shellShowing("New"));

click(tree("General/Project"));

click(button("Next"));

enter(projectName);

click(button("Finish"));

waitFor(shellDisposed("New Project"));

assertThat(projectExists(projectName));

}

WorkbenchHelper.java

import static WorkbenchHelper.*;

@Test

public void verifyProjectCreation() {

createProject(“MyProject”); 

}

VerifyProjectCreation.java



5

Payoff: Fixture Reuse

import static WorkbenchHelper.*;

@Test

public void verifyFileCreation() {

createProject(“MyProject”); 

createFile(“MyProject/myFile.txt”);

}

VerifyFileCreation.java

public void createProject(String projectName) { ...}

public void createFile(String filePath) { ...}

WorkbenchHelper.java

Pattern: Intention-Revealing Fixture:

Fixture methods should have revealing names.

Payoff: Test Maintenance

public static void createProject(String projectName) {

click(menu("File/New/Other..."));

waitFor(shellShowing("New"));

click(tree("General/Project"));

click(button("Next"));

enter(projectName);

click(button("Finish"));

waitFor(shellDisposed("New Project"));

assertThat(projectExists(projectName));

}
WorkbenchHelper.java

1

2

Menu change

Shell name change
3 Tree path change
4 Button text change

5 Focus change
6 Button text change

The Rub:

Test infrastructure should not leak!



6

Payoff: Test Simplicity

import static WorkbenchHelper.*;

@Test

public void verifyFileCreation() {

createProject(“MyProject”); 

createFile(“MyProject/myFile.txt”);

}

VerifyFileCreation.java

Pattern: Self-Verifying Fixture:

Fixtures enforce their own contracts.

Pattern: Externalized Configuration:

Fixtures encapsulate configuration details (locale, OS, app version, etc.)

A/F/T Process Summary

Testers write literate tests built out of 

primitives provided by the fixture.

Fixtures are delivered and maintained by 

developers.

Fixtures are a model, interface and contract.



7

Tests vs. Fixtures

Tests are 

literate, declarative, descriptive (DAMP)

Fixtures are

intention-revealing, robust, DRY

A well designed Domain Specific Language will appear as 

Descriptive And Meaningful Phrases.

http://blog.jayfields.com/2006/05/dry-code-damp-dsls.html

Don’t Repeat Yourself (DRY, also known as 

Once and Only Once or Single Point of Truth (SPOT))

http://en.wikipedia.org/wiki/Don't_repeat_yourself

Challenge: Breaking Down the Wall

Requires an investment in

change.

New kind of collaboration 

between QA and dev.

http://en.wikipedia.org/wiki/Image:Greatwall_large.jpg



8

Process Patterns

1. Fixture as Deliverable

2. Lockstep Delivery

3. Fixture Failure Escalation

Fixture as Deliverable

How do you ensure fixtures are well-factored?

Treat fixtures as deliverables.

(Estimate, schedule, review, etc.)



9

Lock-step Delivery

How do you ensure testers are never fixture-starved?

Bundle fixture deliveries with 

the associated functionality.

Fixture Failure Escalation

How do you ensure that fixtures stay in sync?

Run regular (full coverage) fixture smoke tests

and treat failures as developer P1s.

Prime directive: protect your client (QA).



10

Key Points

Fixtures reify a model of the application under test 

Fixture model should be defined in terms of domain expert's vocabulary 
(A DSL for testing)

Fixtures are the only way for testers to access the application

Fixtures are built and maintained by the same developers who deliver 
functionality

Fixtures are deliverables (need to be estimated, scheduled for, 
reviewed, etc.)

Tests might be DAMP but fixtures are DRY

- improves maintainability since logic that is most likely to change (and 
has the broadest impact) is not repeated


