
Apache CXF Web Services

Dennis M. Sosnoski
Portland Java Users Group
August 16, 2011

http://www.sosnoski.com http://www.sosnoski.co.nz



2<www.sosnoski.com/>

Apache CXF web services

About me

Java, web services, and SOA expert

• Consultant and mentor on SOA and web services for 
companies worldwide

• Training instructor for Java web services (Apache Axis2 and 
CXF, Metro), web services security, etc.

• Open source developer:
– Apache Apache Axis2, CXF, and WSS4J committer
– JiBX XML data binding lead developer

• Writer on Java, XML, and SOA for IBM developerWorks

• Presenter at users groups and conferences worldwide
Aotearoa / New Zealand and U.S. based



3<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



4<www.sosnoski.com/>

Apache CXF web services

CXF web services

CXF the leading open source web services stack for Java

• Best feature support

• Most flexible approach
– Configure using annotations

– Manipulate configuration directly in code

– Configure using Spring

– Supports range of data binding tools, front ends, etc.

• Very active development team, fast bug fixes and 
enhancements

Quick look at CXF components...



<www.sosnoski.com/>

Apache CXF web services

Bus

Registry of extensions, interceptors, and properties

Provider of shared resources:
• WSDL managers
• HTTP destination factory (Jetty the default)
• Features usable by applications
• etc.

Configurable – default implementation uses Spring

<cxf:bus xmlns:cxf="http://cxf.apache.org/core">
    <cxf:features>
        <cxf:logging/>
        <wsa:addressing xmlns:wsa="http://cxf.apache.org/ws/addressing"/>
    </cxf:features>
</cxf:bus>



<www.sosnoski.com/>

Apache CXF web services

Front-ends

Programming model for application interactions with CXF

Three main variations:
• JAX-RS (configured with annotations and/or XML)
• JAX-WS (configured with annotations and optionally 

XML)
• Simple (limited compared to JAX-WS, but no 

annotations required)



<www.sosnoski.com/>

Apache CXF web services

Interceptors

Used as message processing steps

Separate lists of interceptors for different flows:
• Normal inbound
• Normal outbound
• Fault inbound
• Fault outbound

Different phases of processing used to order invocations
– Message may be transformed in process

Can be used for any desired special processing (e.g., 
Logging)



<www.sosnoski.com/>

Apache CXF web services

Data Bindings

Convert between XML and Java object representations

Choices allow flexibility:
• JAXB 2.x only approach supported by JAX-WS standard
• XMLBeans for flexible access to data as XML

– DOM model allows XPath and XQuery access, other tools
– Data binding facade for limited conversions to/from Java objects

• JiBX for flexibility
– Bindings that handle structural differences between XML and 

objects
– User extensions for handling special cases
– Multiple bindings to same Java objects, input-only and output-

only



9<www.sosnoski.com/>

Apache CXF web services

Web services approaches

Two main schools of thought:

• REST focuses on simplicity and flexibility

• SOAP focuses on extensibility and feature support
Both approaches have their use cases



10<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



11<www.sosnoski.com/>

Apache CXF web services

REST basics

Representational State Transfer
Based on Roy Fielding's doctoral thesis on HTTP:

• Formalization of the web as resources

• HTTP verbs provide actions on resources:
– GET to retrieve current state of a resource

– PUT to replace the current state of a resource

– POST to create a new resource

– DELETE to remove a resource

• Powerful and flexible structure for resource-oriented system
– GET verb guaranteed safe, responses can be cached

– PUT and DELETE verbs are idempotent



12<www.sosnoski.com/>

Apache CXF web services

Library example

Base URI http://localhost:8080/library

• http://localhost:8080/library/books to access the book 
collection directly
– Using this URI operates on all books in collection

• GET returns all books
• PUT replaces all books
• POST adds a new book
• DELETE removes all books

– http://localhost:8080/library/books/{isbn} operates on a particular 
book (GET, PUT, DELETE)



13<www.sosnoski.com/>

Apache CXF web services

Library example continued

• http://localhost:8080/library/types to access the books by 
type
– Using this URI operates on all books of type

• GET returns all types
• PUT replaces all types
• POST adds a new type
• DELETE removes all types

– http://localhost:8080/library/types/{name} operates on a particular 
type (GET, PUT, DELETE)

• Provides flexible access to the book collection as a 
structured resource



14<www.sosnoski.com/>

Apache CXF web services

JAX-RS

JAX-RS uses Java annotations for REST support

@Path("library")
public class RestLibraryImpl
{
    @GET @Path("books")
    public BookList getAllBooks() { ... }

    @PUT @Path("books")
    public void putAllBooks(BookList books) { ... }

    @POST @Path("books")
    public String addBook(Book book) { ... }

    @DELETE @Path("books")
    public void deleteAllBooks() { ... }

    @GET @Path("books/{isbn}")
    public Book getBook(@PathParam("isbn") String isbn) { ... }
    ...
}



15<www.sosnoski.com/>

Apache CXF web services

REST client support

Current JAX-RS version does not define client handling
CXF implements its own REST client support

• WebClient interface to service uses HTTP directly
– WebClient.create(target) to get an instance
– “Fluent” API to modify state

• reset() clears modifications
•path(“...”) appends to path
•accept(“...”) sets content accept type
•get() / put() / post() / delete() execute operations
•Many other variations...

• Proxy-based interface to service with JAXRSClientFactory 
hides details (more on this later)



16<www.sosnoski.com/>

Apache CXF web services

JAX-RS example

REST Library service using CXF JAX-RS

• Demonstration of service in browser

• Service code walkthrough and discussion

• Client code walkthrough and demonstration

• Fill in remaining operations for client



17<www.sosnoski.com/>

Apache CXF web services

Parameter types

Many ways to get information from request:

• @PathParam – portion of path mapped to parameter

• @QueryParam – query parameter values

• @FormParam – value from form data

• @HeaderParam – HTTP header value

• @CookieParam – HTTP cookie value

• @MatrixParam – named qualifier parameter value
– /library/books;author=Cook,Glen

CXF WebClient has matching methods (query(...), form(...), 
header(...), cookie(...), matrix(...)



18<www.sosnoski.com/>

Apache CXF web services

Data handling

Can specify media types for request and response bodies

• @Consumes for request data type

• @Produces for response data type

• Most interesting choices for web services:
– "application/xml" for standard XML

– "application/json" for JSON

Providers used for serializing / deserializing Java data

• @Provider annotation

• Can also be done using Spring or in-code configuration
CXF allows all data bindings to be used with JAX-RS



19<www.sosnoski.com/>

Apache CXF web services

User models

CXF lets you supply XML service description in place of 
JAX-RS annotations:

• <jaxrs:model> root element as wrapper

• <jaxrs:resource> child element for each resource class
– path, produces, consumes, verb attributes

– <jaxrs:operation> child element for each resource method
• path, produces, consumes, verb attributes
• Optional <jaxrs:param> child element for each parameter

Allows plain Java class to be exposed as service



20<www.sosnoski.com/>

Apache CXF web services

Debugging and tracking problems

Monitor message exchanges externally

• Tcpmon simple, fast, and easy tool for web services work

• Wireshark excellent for all types of transport protocols, but 
not as simple

• soapUI has advanced features, including automated testing
Logging to track internal processing flow

• Can add interceptors to view messages being exchanged

• Output controlled by logging configuration file
Debugging through code (both client and server side)

• Can run services within IDE

• IDE can attach to server via JPDA
Demonstration using proxy-based client



21<www.sosnoski.com/>

Apache CXF web services

JSON formatting

JSON format can be an issue

• Differences over array handling (name around items?)

• Differences over object handling (name around values?)
CXF gives you options:

• Transformation feature provides scripted control
– Basic transformations of both XML and JSON

– Configured via Spring or in code

• Can also use Jackson JSON handling
– Configure as provider for CXF JAX-RS



22<www.sosnoski.com/>

Apache CXF web services

WADL service descriptions

Web Application Description Language

• <wadl:application> root element with optional child 
elements
– <wadl:grammars> child defines document grammars

– <wadl:resources>child defines resources with nested structure
• <wadl:resource> gives path (if any)

» <wadl:param> children for parameters
» <wadl:method> children for methods
» <wadl:resource> children for subresources

– <wadl:method> gives request/response information

View example for Library
Proposal to W3C, no plans to make it an official standard
CXF supports client code generation



23<www.sosnoski.com/>

Apache CXF web services

REST benefits

Simple interface for working with resources:

• Clients easily implemented directly in code

• Browser-compatible, to some degree

• JSON supports easy handling in AJAX clients

• Resources may be cached for GET responses

• GET, PUT, DELETE just retry on failure

• HTTPS/TLS can be used for point-to-point security



24<www.sosnoski.com/>

Apache CXF web services

REST limitations

Not all that's called REST really is REST:

• Random query parameters slapped on a URI

• Side-effects from GET operations

• POST operations to modify existing data
Even when used correctly, difficult to handle services:

• Consider all the different resources involved in making an 
airline reservation

• No direct way to map this to a REST architecture



25<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



26<www.sosnoski.com/>

Apache CXF web services

SOAP basics

Formalized message exchanges at the core
SOAP defines standard wrapper for all messages

• Envelope is wrapper for content, but no useful information

• Header can contain both application data and control 
information 

• Body contains application data as XML

• Each request message identifies the operation to be 
performed by service

Normally a single URI for service, only POST verb used
Biggest advantage is extensibility

• Designed with extension in mind

• Supports plug-in extension technologies



27<www.sosnoski.com/>

Apache CXF web services

The WSDL additive

Web Services Description Language 

• Defines service interface as XML exchanges

• Extensible for other types of metadata
Clearly defines the service interface

• Different access techniques (transport, technology)

• Operations defined by each port type

• Input / output messages for each operation

• Detailed XML description of each message
Supports “automatic” configuration of clients and 
providers
Contract adherence can be verified by tools



28<www.sosnoski.com/>

Apache CXF web services

Library example

Service URI http://localhost:8080/library

• getAllBooks operation to return all books in collection

• getBook operation to get a single book

• addBook operation to add a book

• Any other convenient operations
No formal structure to operations defined by service
WSDL service definition walk-through



29<www.sosnoski.com/>

Apache CXF web services

JAX-WS

Standardized SOAP services in Java

• Uses source code annotations
– Define interface representing service

– Attach actual implementation to interface

– Supply pregenerated WSDL for the service

– Many additional options

• Reference implementation uses JAXB data binding
Several open source implementations:

• Sun/Oracle reference implementation supplied with Metro

• CXF supports with all data bindings, attachments, etc.



30<www.sosnoski.com/>

Apache CXF web services

JAX-WS example

@javax.jws.WebService
  (endpointInterface="com.talend.ws.library.soap.common.Library",
  portName="library",
  targetNamespace="http://ws.talend.com/library/wsdl",
  serviceName="Library")
public class LibrarySoapImpl implements Library
{
    public boolean addBook(String type, String isbn,
        List<String> author, String title) { … }
    
    public BookInformation getBook(String isbn) {
        return m_server.getBook(isbn);
    }

    public List<BookInformation> getBooksByType(String type) {
        return m_server.getBooksByType(type);
    }
}

JAX-WS uses Java annotations for SOAP support



31<www.sosnoski.com/>

Apache CXF web services

JAX-WS usage

Most often used with existing service definition

• Generate JAX-WS service and/or client code (including 
annotations) from service definition

• Add configuration information for the stack (CXF)

• Deploy using the stack
Some peculiarities

• Client code generally requires access to WSDL at runtime

• Runtime WSDL processing slows startup



32<www.sosnoski.com/>

Apache CXF web services

Code generation from WSDL

CXF provides Wsdl2Java tool

• Run directly, from Ant, or via Maven plugin

• Many options, including:
-validate – validate the supplied WSDL before generating switch

-p package – target package for generated code

-client – only generate client code switch

-server – only generate server code switch

-wsdlLocation path – path used for WSDL in generated code

-d dir – output directory

Example generates both client and server code at once



33<www.sosnoski.com/>

Apache CXF web services

JAX-WS example

SOAP Library service using CXF JAX-WS

• Demonstration of client and service

• Monitor message exchange with Tcpmon

• Client and service code walkthrough and discussion

• Implement added operations for service

• Deploy and test to confirm



34<www.sosnoski.com/>

Apache CXF web services

SOAP Faults

Fault element part of the basic SOAP definition

• Replaces normal Body content for response

• Way to signal processing errors
Basic Fault structure uses predefined error codes
Also allows arbitrary content in <detail> element
Application-level Faults are defined in WSDL:

• Faults are listed in two (or more) places
– Within the relevant <portType>/<operation>

– Within the relevant <binding>/<operation>

• The name attributes must match! (no namespaces)



35<www.sosnoski.com/>

Apache CXF web services

Other JAX-WS options

Annotation-based configuration of JAX-WS handlers
Dispatch/Provider API for working directly with XML

• Work with payload or entire message

• DOM, stream, transform Source, etc.
CXF extension supports alternative data bindings:

• JAXB 2.x the standard

• XMLBeans useful when working with data as XML
– XPath/XQuery and DOM for XML manipulation

– Data binding facade for working with data

• JiBX data binding useful for flexibility



36<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



37<www.sosnoski.com/>

Apache CXF web services

Where to start?

SOAP web services can be developed in different ways

• “WSDL first” approach develops WSDL first, generates 
code from WSDL for both client and service

• “Code first” approach normally means exposing service 
implementation code directly

• Another alternative is “Code to WSDL”, starting from 
existing code to develop WSDL



38<www.sosnoski.com/>

Apache CXF web services

WSDL structure

Understand  references in WSDL

• <service>/<port>/@binding references <binding> name

• <binding>/@type references <portType> name

• <portType>/<operation>/<input>|<output>|
<fault>/@message references <message> name

• <message>/<part>/@element references <element> name 
in schema definition

All these references use namespaces
Example



39<www.sosnoski.com/>

Apache CXF web services

Getting started

“WSDL first” fine, but difficult

• Complex and confusing WSDL structure

• Poor tools for editing and refactoring WSDL and schema
“Code first” approaches exposing code directly create 
tight couplings

• Changes in service code flow through to client

• Existing clients may be broken by changes
“Code to WSDL” often best approach

• Use existing service code as base

• Generate WSDL from code, then modify as appropriate

• Generate code from WSDL, adapt existing code to match



40<www.sosnoski.com/>

Apache CXF web services

Code to WSDL tools

CXF provides java2wsdl tool, some limitations

• No way to customize handling

• No way to generate documentation
JiBX project Jibx2Wsdl often a better alternative

• Generates JiBX binding, schema, and WSDL from supplied 
service class(es)

• Extensive customizations to control generation

• Uses JavaDocs from source code for WSDL and schema 
documentation

• Lets you leverage your code investment for web services, 
even if not using JiBX



41<www.sosnoski.com/>

Apache CXF web services

Service extensibility issues

Hard to keep services frozen

• Interface changes to suit enterprise requirements

• Data content expands
Changing the service interface is difficult

• Many changes break existing clients
Adding new versions also problematic



42<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



43<www.sosnoski.com/>

Apache CXF web services

SOAP extension technologies

Extends basic SOAP with added functionality:
• WS-Addressing – adds message identification and routing 

information
• WS-Security – adds XML encryption and signing
• WS-Trust, WS-SecureConversation – enterprise 

authentication and ongoing exchanges
• WS-ReliableMessaging – adds message acknowledgement 

and retransmission
Use SOAP Header for added metadata
All operate (more-or-less) transparently:

• Plug into SOAP stack message flow

• Little or no change to application code required



44<www.sosnoski.com/>

Apache CXF web services

WS-Addressing

Standard for identifying messages and endpoints

• Allows messages to be assigned identifiers

• Allows messages to be correlated with other messages

• Defines endpoints involved in message exchange:
– wsa:To for message destination

– wsa:From for message source

– wsa:ReplyTo for response message destination

– etc.

• Embeds identification of desired operation in message
Frees SOAP from the request-response pattern of HTTP
Allows asynchronous services, along with many other 
capabilities



45<www.sosnoski.com/>

Apache CXF web services

Web service security

Different applications have different needs

• Message confidentiality (secrecy)

• Access authentication

• Message integrity and authenticity
Security usage determined by your needs
REST can use secure transport (SSL/TLS)
SOAP has more flexibility

• Secure transport for point-to-point security

• WS-Security with intermediaries, digital signatures

• WS-Trust and WS-SecureConversation for authentication 
and efficiency

• WS-Policy and WS-SecurityPolicy to configure



46<www.sosnoski.com/>

Apache CXF web services

Simple WS-Security example

AsymmetricBinding policy

• Client and server each have a key and a certificate

• Each uses private key to sign messages being sent (as 
desired), other's public key (certificate) to verify signatures

• Each uses other's public key (certificate) to encrypt 
messages being sent (as desired), own private key to 
decrypt messages received

Demonstrate with message capture
Discuss configuration and operation



47<www.sosnoski.com/>

Apache CXF web services

WS-ReliableMessaging

Supports reliable message exchange

• Guaranteed delivery and ordering features

• Acknowledgments of messages received
– May be piggy-backed on application messages using headers

– May be sent separately (as for one-way services)

• All the issues of any message queuing system
– Messages must be held by sender until acknowledged

– Persistent storage needed for robust operation

Builds on WS-Addressing (endpoints, in particular)



48<www.sosnoski.com/>

Apache CXF web services

CXF summary

Already the most flexible Java web services stack

• Best and most complete REST support

• SOAP WS-* support close to the best (and improving)

• Different configuration options adapt to widest range of 
application scenarios

• OSGi support adding even more flexibility
Also the best supported
The best approach for building web services!



49<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



50<www.sosnoski.com/>

Apache CXF web services

ActiveMQ

Industrial-strength message queuing
Java implementation with full JMS support
Extensive cross language clients and protocol support
Advanced message queue features (message groups, 
virtual destinations, etc.)
Pluggable transport protocols
Fast JDBC persistence
REST API, along with CXF and Axis2 support



51<www.sosnoski.com/>

Apache CXF web services

Apache Camel

Powerful integration framework
Supports full range of enterprise integration patterns

• Routing and mediation rules to control processing

• Multiple ways to define the rules:
– Fluent API for Java code

– Spring Framework XML configuration

– Scala Domain Specific Language (DSL)

• All three approaches support IDE smart completion
Supports wide range of endpoints and messaging models

• Identified by URIs for extensibility

• Modular so only those used need to be in classpath

• Core framework kept small



52<www.sosnoski.com/>

Apache CXF web services

Camel CXF support

CXF supports Camel transport:

• Use as alternative to built-in CXF transports

• Allows wide range of special mechanisms (files, FTP, 
SMTP, etc.)

Camel supports CXF endpoints:

• Route incoming request messages to CXF

• Response processed directly by Camel



53<www.sosnoski.com/>

Apache CXF web services

ServiceMix

Enterprise Services Bus based on Apache components

• Karaf OSGi server runtime

• CXF web services

• ActiveMQ message queue

• Camel routing and mediation

• ODE BPEL orchestration
Lightly glued together with some added code



54<www.sosnoski.com/>

Apache CXF web services

Outline

CXF and web services background
REST web services in CXF
SOAP web services in CXF

• SOAP basics with JAX-WS

• WSDL service definitions for SOAP

• WS-* SOAP extensions
Building SOA on CXF and Apache
Support for CXF and Apache SOA



55<www.sosnoski.com/>

Apache CXF web services

Support

Good basic support via Jira and mailing lists
Commercial support from many sources:

• CXF – my company for fast support, training, mentoring, 
new features; Talend for contracted support services

• ActiveMQ – Savoir Tech for fast support; can also provide 
contracted support, as can Talend, FuseSource, 
SpringSource, etc.

• Camel – Savoir Tech, Total Transaction Management for 
fast support; these or Talend, FuseSource, SpringSource 
for contracted support

Full service alternatives (including ServiceMix or 
alternative ESBs):

• FuseSource, SpringSource, Savoir, Talend



56<www.sosnoski.com/>

Apache CXF web services

Resources

CXF project home: http://cxf.apache.org

• Extensive online-only documentation

• Support page http://cxf.apache.org/support.html
My web site: http://www.sosnoski.com / 
http://www.sosnoski.co.nz


	Introduction to CXF/TSF
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	The Role of WSDL
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

