
Eva Andreasson

Product Manager, Azul Systems

A JVM Does What?

©2011 Azul Systems, Inc. 2

Presenter

• Eva Andreasson – Innovator & Problem solver
─ Implemented the Deterministic GC of JRockit Real Time

─ Awarded patents on GC heuristics and self-learning
algorithms

─ Most recent: Product Manager for Azul Systems’ scalable
Java Platform Zing

• I like new ideas and brave thinking!

©2011 Azul Systems, Inc. 3

Agenda

• What is a JVM?

• What the JVM enables for Java

• Compilers and optimization

• Garbage collection and the pain of fragmentation

• What to (not) think about

©2011 Azul Systems, Inc. 4

What is a Java Virtual Machine (JVM)?

• A JVM described in a simple sentence

A software module that provides the same execution
environment to all Java applications, and takes care of the
“translation” to the underlying layers with regards to execution of
instructions and resource management.

©2011 Azul Systems, Inc. 5

What is a Java Virtual Machine (JVM)?

• Key benefits of Java, enabled by the JVM
─ Portability

─ Dynamic Memory Allocation

• Other error-preventing and convenient services of the
JVM

─ Consistent Thread Model

─ Optimizes and Manages Locking

─ Enforces Type Safety

─ Dynamic Code Loading

─ Quick high-quality Time Access (e.g. currentTimeMillis, nanoTime)

─ Internal introspection

─ Access to huge pre-built library

─ Access to OS and environmental information

©2011 Azul Systems, Inc. 6

Portability
Compile once, run everywhere

Hardware

Architecture #1

Operating

System

JVM

Java

Application

Hardware

Architecture #2

Operating

System

JVM

Java

Application

Same code!

©2011 Azul Systems, Inc. 7

What Makes Portability Possible?

• javac – takes Java source code compiles it into bytecode
─ MyApp.java  MyApp.class

• Bytecode can be “translated” by JVMs into HW
instructions

─ Anywhere the JVM runs…

• Two paths of “translation”
─ Interpretation

─ The “dictionary” approach

─ Look up instruction, execute

─ (JIT) Compilation
─ The “intelligent translator”

─ Profile, analyze, execute faster

©2011 Azul Systems, Inc. 8

JVM Compilers

• Common concepts:
─ Hotspot detection, Re-compilation, and De-compilation

• Optimizations need resources
─ Temporary “JVM memory”

─ “Compiler threads”

─ Cost is covered by the faster execution time

• Different compilers for different needs
─ Client (“C1”), quicker compilation time, less optimized code

─ Server (“C2”), slower compilation time, more optimized code

─ Tiered, both C1 and C2

─ C1’s profiling used for C2’s compilation

©2011 Azul Systems, Inc. 9

Exploring Code Optimizations
Example 1: Dead Code Elimination

• Eliminates code that does not affect the program

• The compiler finds the “dead” code and eliminates the
instruction set for it

─ Reduces the program size

─ Prevents irrelevant operations to occupy time in the CPU

• Example:

int timeToScaleMyApp(boolean endlessOfResources) {

int reArchitect = 24;

int patchByClustering = 15;

int useZing = 2;

if (endlessOfResources)

return reArchitect + useZing;

else

return useZing;

}

©2011 Azul Systems, Inc. 10

int daysLeft(int x) {

if (x == 0)

return 0;

else

return x - 1;

}

int whenToEvaluateZing(int y) {

return daysLeft(y) + daysLeft(0) + daysLeft(y+1);

}

Each method call

takes time, and causes

extra jump instructions

to be executed

Exploring Code Optimizations
Example 2: Inlining

©2011 Azul Systems, Inc. 11

int whenToEvaluateZing(int y) {

int temp = 0;

if (y == 0) temp += 0; else temp += y - 1;

if (0 == 0) temp += 0; else temp += 0 - 1;

if (y+1 == 0) temp += 0; else temp += (y + 1) - 1;

return temp;

}

Eliminating multiple method

calls by inlining the method

itself, speeds up the

execution

Exploring Code Optimizations
Example 2: Inlining

©2011 Azul Systems, Inc. 12

int whenToEvaluateZing(int y) {

if (y == 0) return y;

else if (y == -1) return y - 1;

else return y + y - 1;

}

Further optimizations can

often be applied to speed up

even more….

Exploring Code Optimizations
Example 2: Inlining

©2011 Azul Systems, Inc. 14

Summary on Portability, Compilers, and

Optimizations

• Since the JVM’s Compiler does the “translation” and
optimization for you, you don’t need to think about:

─ Different HW instruction sets

─ How to write your methods in a more instruction friendly way

─ How calls to other methods may impact execution performance

• Unless you want to? 

©2011 Azul Systems, Inc. 15

What is a Java Virtual Machine (JVM)?

• Key benefits of Java, enabled by the JVM
─ Portability

─ Dynamic Memory Allocation

• Other error-preventing and convenient services of the
JVM

─ Consistent Thread Model

─ Optimizes and Manages Locking

─ Enforces Type Safety

─ Dynamic Code Loading

─ Quick high-quality Time Access (e.g. currentTimeMillis, nanoTime)

─ Internal introspection services

─ Access to huge pre-built library

─ Access to OS and environmental information

©2011 Azul Systems, Inc. 16

No Need to Be Explicit

import java.io.*;

class ZingFan {

private String myName;

public ZingFan(String name){

myName = name;

}

public String getName() {

return myName;

}

public static void main (String args[]){

ZingFan me = new ZingFan("Eva");

System.out.println(me.getName());

}

}

Just type “new” to

get the memory you

need

No need to track or

free used memory!

©2011 Azul Systems, Inc. 17

Garbage Collection

• Dynamic Memory Management – The perceived pain that
really comes with all the goodness

• Allocation and Garbage Collection
─ Parallel

─ Concurrent

─ Generational

─ Fragmentation and Compaction

─ The torture of tuning most JVMs

©2011 Azul Systems, Inc. 18

Allocation & Garbage Collection

• Java Heap (-Xmx)

• JVM Internal Memory

• Top: RES / RSS --- total memory footprint

Java Heap
• Where all Java Objects are allocated

JVM Internal

Memory
• Code Cache

• VM threads

• VM Structs

• GC Memory

©2011 Azul Systems, Inc. 19

Old

Object

Old

Object

Allocation & Garbage Collection

• Thread Local Allocation

Thread Local Area B

Object

Bar

Thread Local Area A

Java Heap

Thread A

Thread B

Object Foo

©2011 Azul Systems, Inc. 20

Object

NoFit

Old

ObjectObject Foo

Object

Bar

Old

Object

Allocation & Garbage Collection

• Garbage Collection

Java Heap
???

Thread B

Thread A

Reference

©2011 Azul Systems, Inc. 21

Garbage Collection

• Parallel Garbage Collection
─ Stop the world

Java Heap

Object

NoFit

Thread B

Thread A

Reference

Old

ObjectObject Foo

Object

Bar

Old

Object

GC Thread

Object

NoFit

©2011 Azul Systems, Inc. 22

Garbage Collection

• Concurrent Garbage Collection
─ While application is running

Java Heap

Old

Object
Object

Bar

Old

Object

Object Foo

Thread B

GC Thread

Object Foo

Reference

©2011 Azul Systems, Inc. 23

Fragmentation

• When there is room on the heap
─ But not large enough…

─ Even after GC…

Java Heap

Older

Object
Object

Bar

Object

NoFit

Thread B

Object Foo

???

©2011 Azul Systems, Inc. 24

Older

Object

Object

Bar Object Foo

Generational Garbage Collection

• Most objects die young…

Java Heap

Thread B

???

Old GenerationYoung Generation

Older

Object

Object

NoFit

Object

NoFit

©2011 Azul Systems, Inc. 25

Generational Garbage Collection

• Promotion

Java Heap

Older

Object
Object

NoFit

Object

NoFit

• Less fragmented memory

• Delays “worst case”

Many Young Objects

Thread B
Object

YGCTrig

Object

YGCTrig

???

Old GenerationYoung Generation

©2011 Azul Systems, Inc. 26

Compaction

• Move objects together
─ To fit larger objects

─ Eliminate small un-useful memory gaps

Java Heap

Older

Object

Object

Bar
Object

NoFit Object Foo

???

Object

Bar Object Foo

Object

NoFit

Old GenerationYoung Generation

©2011 Azul Systems, Inc. 27

Compaction

• Generational GC helps delay, but does not “solve”
fragmentation

• Compaction is inevitable
─ When moving objects, you need to update references

─ Most JVMs have to stop the world as part of compaction

• Many approaches to shorten compaction impact
─ Partitioned compaction

─ Time controlled compaction

─ “Best result” calculations on what areas to compact

─ Reference counting

©2011 Azul Systems, Inc. 28

Pain of Tuning

• -Xmx – hast to be set “right”
─ Exactly the amount you need for your worst case load

─ Too much – waste of resources

─ Too little – OutOfMemoryError

─ Unpredictable loads and missconfiguration cause a lot of down-
time

• Example of production-tuned CMS:

©2011 Azul Systems, Inc. 29

Biggest Java Scalability Limitation

• For MOST JVMs, compaction pauses are the biggest
current challenge and key limiting factor to Java
scalability

• The larger heap and live data / references to follow, the
bigger challenge for compaction

• Today: most JVMs limited to 3-4GB
─ To keep “FullGC” pause times within SLAs

─ Design limitations to make applications survive in 4GB chunks

─ Horizontal scale out / clustering solutions

─ In spite of machine memory increasing over the years…

 This is why I find Zing so interesting, as it has implemented concurrent
compaction…

─ But that is not the topic of this presentation… 

©2011 Azul Systems, Inc. 30

2c for the Road
What to (not) Think About

1. Why not use multiple threads, when you can?
─ Number of cores per server continues to grow…

2. Don’t be afraid of garbage, it is good!

3. I personally don’t like finalizers…error prone, not
guaranteed to run (resource wasting)

4. Always be careful around locking
─ If it passes testing, hot locks can still block during production load

5. Benchmarks are often focused on throughput, but miss out
on real GC impact – test your real application!
─ “Full GC” never occurs during the run, not running long enough to

see impact of fragmentation

─ Response time std dev and outliers (99.9…%) are of importance
for a real world app, not throughput alone!!

©2011 Azul Systems, Inc. 31

Summary

• JVM – a great abstraction, provides convenient services
so the Java programmer doesn’t have to deal with
environment specific things

• Compiler – “intelligent and context-aware translator” who
helps speed up your application

• Garbage Collector – simplifies memory management,
different flavors for different needs

• Compaction – an inevitable task, which impact grows with
live size and data complexity for most JVMs, and the
current largest limiter of Java Scalability

©2011 Azul Systems, Inc. 32

For the Curious: What is Zing?

• Azul Systems has developed scalable Java platforms for
8+ years

─ Vega product line based on proprietary chip architecture, kernel
enhancements, and JVM innovation

─ Zing product line based on x86 chip architecture, virtualization
and kernel enhancements, and JVM innovation

• Most famous for our Generational Pauseless Garbage
Collector, which performs fully concurrent compaction

©2011 Azul Systems, Inc. 33

Q&A

eva.andreasson@azulsystems.com

http://twitter.com/AzulSystemsPM

www.azulsystems.com/zing

mailto:eva.andreasson@azulsystems.com
http://twitter.com/
http://www.azulsystems.com/zing

©2011 Azul Systems, Inc. 34

Additional Resources

• For more information on…
…JDK internals: http://openjdk.java.net/ (JVM source code)

…Memory management:
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_w
hitepaper.pdf (a bit old, but very comprehensive)

…Tuning:
http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/genin
fo/diagnos/tune_stable_perf.html (watch out for increased rigidity and
re-tuning pain)

…Generational Pauseless Garbage Collection:
http://www.azulsystems.com/webinar/pauseless-gc (webinar by Gil
Tene, 2011)

…Compiler internals and optimizations:
http://www.azulsystems.com/blogs/cliff (Dr Cliff Click’s blog)

http://openjdk.java.net/
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/tune_stable_perf.html
http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/tune_stable_perf.html
http://www.azulsystems.com/webinar/pauseless-gc
http://www.azulsystems.com/webinar/pauseless-gc
http://www.azulsystems.com/webinar/pauseless-gc
http://www.azulsystems.com/blogs/cliff

