Writing Better Ant Scripts:
Techniques, Patterns and Antipatterns

Make your builds more manageable,
maintainable, and understandable

Douglas Bullard

Nike, Inc.
2/19/2008

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Topics covered in this presentation
® Patterns
® Antipatterns
® Techniques

® Putting it all together: Designing master/project build scripts

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

“| suffered for this, now it’s your turn”

George Harrison, “I, Me, Mine”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Common problems with Ant build scripts:

® Many scripts are complicated, hard to understand
® Old scripts are never upgraded

® Workarounds for limitations in older versions of Ant made obsolete by new
Ant tasks

® Little or no reuse within or across projects
® Every script is different, every script is new

® Differences between scripts can be confusing to developers
® Difficult to debug
® |mpossible to tell what versions of libraries used

® Difficult to upgrade to new versions of Ant

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Goals of writing better Ant scripts:

Standardize build scripts

Maximize reuse of code within the project
Maximize reuse of code across projects
Improve readability

Improve productivity

Limit number of visible targets to minimize
confusion

Allow easier upgrading to new versions of Ant

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Patterns

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Reuse code with

® One of the most powerful ways of reusing Ant code is the proper
use of

® Macrodefs allow you to define a “private method” with
“parameters”, called attributes

® Repeated invocations can use different values for the attributes without
conflict

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Reuse code with

® Macrodefs are better than and
® Most uses of can be replaced by macrodefs
® Macrodefs aren’t targets
® Putting code into macrodefs limits visibility

® Once you define a property, it'’s defined forever. This limits the ability to use the
same target more than once with different property settings

° and tasks cab get around this, but care must be taken
° and tasks are slow!
° runs all targets again!

® Macrodefs allow easier code flow than trying to specify “depends”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example of code reuse with

<target name="compile">

This is a simple example of

) <javac srcdir="§{ "
repeating blocks of code classpathref=" "
. . . . destdir="${compile.dir}"
with minor differences in debug="$ {compile.debug} "
structure. debuglLevel="${compile.debugLevel}"

deprecation="${compile.deprecation}"
includeAntRuntime=" "
optimize="${compile.optimize}">

</javac>

<javac srcdir=" "
classpathref=" "
destdir="${compile.dir}"
debug="${compile.debug}"
debuglevel="${compile.debugLevel}"
deprecation="${compile.deprecation}"
includeAntRuntime=" "
optimize="${compile.optimize}">

</javac>

<javac srcdir=" "
classpathref=" "
destdir="${compile.dir}"
debug="${compile.debug}"
debuglevel="${compile.debugLevel}"
deprecation="${compile.deprecation}"
includeAntRuntime=" "
optimize="${compile.optimize}">

</javac>

</target>

Writing Better Ant Scripts:

Techniques, Patterns, and Antipatterns

Example of code reuse with

Notice that the same
method is used several
times with different
arguments. This makes the
main body of code easier
to read, and avoids calling a
target with <ant> or
<antcall>, getting around
“properties are forever”
issue.

Note that the “includeant”
attribute has as default of
false - you don’t have to
include it as an argument.

<target name="compile">

< srcdir= "

< srcdir= "

< srcdir= "
</target>

<macrodef name="compilecode”>

<attribute name="

" classpath=" ">
" includeant="true” classpath="
" includeant="true” classpath="

<attribute name="includeant” default="false”/>

<attribute name="
<sequential>
<javac srcdir="
classpathref="

destdir="${compile.dir}"
debug="${compile.debug}"

debuglLevel="$ {compile.debuglevel}"
deprecation="${compile.deprecation}"

includeAntRuntime="
optimize="${compile.optimize}">

</javac>
</sequential>
</macrodef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Elements let you insert whole chunks of XML

Macrodef definition:
Macrodef usage:

<macrodef name="doTests">
<attribute name="fork” default="no”/>
<doTests fork="no”>
<sequential>
<junit
printsummary="on"
haltonfailure="false"
fork="@{fork}"
showoutput="true"
failureproperty="test.failed"
errorproperty="test.failed">
<sysproperty key="app.root.dir" value="${app.root.dir}"/>
<sysproperty key="fromant" value="yep"/>
<classpath refid="runtest.classpath"/>
<formatter type="xml"/>
<formatter type="brief" usefile="false"/>
<jvmarg value="-Demma.coverage.out.file=${coverage.dir}/metadata/coverage.emma"/>
<jvmarg value="-Demma.coverage.out.merge=true"/>

</doTests>

</junit>
</sequential>
</macrodef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Elements let you insert whole chunks of XML

Macrodef definition:
Macrodef usage:

<macrodef name="doTests">
<attribute name="fork” default="no”/>
<doTests fork="no”>
<sequential>
<junit
printsummary="on"
haltonfailure="false"
fork="@{fork}"
showoutput="true"
failureproperty="test.failed"
errorproperty="test.failed">
<sysproperty key="app.root.dir" value="${app.root.dir}"/>
<sysproperty key="fromant" value="yep"/>
<classpath refid="runtest.classpath"/>
<formatter type="xml"/>
<formatter type="brief" usefile="false"/>

<jvmarg value="-Demma.coverage.out.file=${coverage.dir}/metadata/coverage.emma" />
<jvmarg value="-Demma.coverage.out.merge=true"/>

</doTests

</junit>
</sequential>
</macrodef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Chaining and discovery with

® Allows addition of new project module build files without changing
master build script

® Two variants of

® [Execute the same build file but use different base directories for each invocation -
use “‘genericantfile” attribute

® Execute a specified list of build scripts, executing same target in each build script
(takes a fileset or filelist - note that order can’t be specified in fileset, so use filelist
if order matters)

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Chaining and discovery with

® Same build file but use different base directories

|nvoking the * ” target <project name="Master" default="buildModules">
(13 " .
calls the “deploy” target in the <target name="buildModules">
“masterbuld.xml” script using a deploy ./masterbuild.xml
]/projects April 08*
different basedir each time. It will
use as the basedir any directory </target>
that begins with “April_08” that is :
. </project>

a subdirectory of “projects”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Chaining and discovery with

® Same target, multiple build files from a fileset:

Invoking the “« ”» tar'get <project name="Master" default="buildModules">
calls the “deploy” target in any <target name="buildModules">
. . . deploy
build script found in any ../projects/April 08 **/build.xml

subdirectory of “projects/April_08”

</target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Ant script inheritance with “Master” build scripts

® |mporting and overriding of master scripts can be done, mimicking
object inheritance and overriding of behavior

° can be used to import another Ant script into the
current script

® Common code can be placed into the master build script
® Project build scripts only contain unique code for that project

® When a script is imported into another script, the importing script can
override targets from the imported script

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Ant script inheritance with “Master” build scripts

® Abstract Targets
® Targets can be referenced in the “master” script which aren’t defined there
® Must be defined in the importing script, or else Ant will fail when run

® No-op Targets
® Empty targets defined in the “master” script which do nothing

® May be overridden in the importing script for more functionality

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example “build-master.xml”

<project name="master" default="deploy” >

Note that this does not

<target name="init" depends=" , init-properties"/>
define targets or
<target name=" ">
the)’ must be defned b)’ the <property name="source.dir" value="./src"/>
importin fle <property name="build.dir" wvalue="./build"/>
P g Tie. </target>
. <target name="compile" depends="init, ">
The target deploy IS a2 NO- <javac srcdir="${source.dir}" destdir="${build.dir}/classes">
OP target —no work WI” be <classpath refid="build.classpath"/>
. </javac>
done unless they is </target>
Overrldden' <target name="jar" depends="compile">

<jar destfile="${build.dir}/lib/${jar.name}"
basedir="${build.dir}/classes" />
defines two </target>

properties <target name="deploy"/>
</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example of importing file

The master file is imported using
the task.

This file only needs to define the
abstract targets , and
specified in the master build f'Ie
plus any custom targets.

The init-properties and deploy
targets in the master file are
overriden in this example

<project name="Some Project" default="deploy'">

<target name="init-properties">
<property file="build.properties"/>
</target>

<target name=" ">
<delete includeemptydirs="true" failonerror="true" quiet="true">
<fileset dir="${target.dir}/classes"/>
<fileset dir="${target.dir}/dependencies" />
<fileset dir="${target.dir}/dist"/>
<fileset dir="${target.dir}/stage"/>
</delete>
</target>

<target name=" " unless="no-ivy">
<ivy-resolve file="${ivy.dep.file}" transitive="true"/>
<ivy-retrieve sync="true"/>

</target>

<target name="deploy" depends="jar">

</target>
</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Using
® “Build Failed” isn’t very informative
® Missing expected properties don’t fail build
® Provide more useful information by using

<fail unless " " message="Missing property thisdoesnotexist”/>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies

® Build scripts don’t always tell what version you're using

® |ars don’t always have versioned names or manifests with
the version in them

® This leads to library dependency hell when setting up
projects

® Do you really have all the jars (or the right versions)
needed for Hibernate?! Or Spring?

® Version conflicts can cause unpredictable behavior

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies

® Solution: Which is more informative! Something
like this...

<fileset dir="${global.lib.dir}">
<include name="commons-beanutils.jar"/>
<include name="commons-collections.jar"/>
<include name="commons-digester.jar"/>
<include name="commons-logging.jar"/>
<include name="commons-validator.jar"/>
<include name='"commons-resources.jar"/>
<include name="jakarta-oro.jar"/>
<include name="struts.jar"/>
<include name="struts-el.jar"/>
<include name="commons-lang.jar"/>
<include name="jstl.jar"/>
<include name="standard.jar"/>
<include name="commons-pool.jar"/>
<include name="displaytag.jar"/>
</fileset>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies

® Solution: Which is more informative?! Or this...

<dependencies>
<dependency org="org.apache" name="log4j" rev=" " conf="dist-ear"/>
<dependency org="org.hibernate" name="hibernate" rev=" " conf="dist-ear,source, javadoc"/>
<dependency org="org.apache" name="struts" rev=" " conf="dist-ear, source"/>
<dependency org="org.apache" name="struts-el" rev=" " conf="dist-ear,source" />

<dependency org="org.springframework" name="spring" rev=" " conf="dist-ear"/>
</dependencies>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies

® Solution: Use a dependency manager
® |vy + Ant ~= Maven dependency management
® |lvy is an Apache project

® Jars are downloaded, cached in local repository, and your specified project library
location

® |vy can store libraries with generic names, no versions — don’t need to change
scripts or IDE projects when upgrading

® |vy can use the ibiblio and Maven2 repositories, the Ivy repository, or your own
(corporate shared libraries, anyone?)

® This gives the architect control over what library versions are available for use in
projects

® Multiple versions of libraries can be used in different projects without confusion

® Easy distribution of libraries allows for easy packaging

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies

® |vy supports transitive dependencies

® |vy not only brings in your project dependencies, but any dependencies they might
have as well, and the dependencies of the dependencies of the dependencies, etc

® When you create your own shared libraries, you write an XML dependency file
for the libraries, declaring its own dependencies, then whenever you use this

libraries you simply declare a dependency on it.

® |vy produces browser-viewable dependency reports when run, and has an .XSL
template for viewing Ivy config files in browser

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies

® More information on lvy at http://ant.apache.org/ivy/index.html

http://ant.apache.org/ivy/index.html
http://ant.apache.org/ivy/index.html

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Proper location of external Ant libraries

® Tasks not native to Ant need their jars imported into Ant
® Most people place these in the Ant/lib dir

® Most people are wrong

® Solution: Put these into an external directory, and explicitly declaring
the classpath for the task in the taskdef

® This will make upgrading to the next version of Ant much easier
® Example:

<taskdef name="commit" classname="net.nike.build.ant.task.svn.SvnCommitTask">

</taskdef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipatterns

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipattern: Too many targets

® Do all those targets really need to be visible?
® Solution: reduce “public” visibility
® Use macrodefs, where it’s possible to make things “private”

® Prefacing target names with a hyphen makes them impossible to execute from the
command line (i.e.,* ”)

® Fill out description attribute for all “public” targets

® Include a“info” or “usage” target, with a complete list of the public targets and their
documentation

® Make “info” your default target

® Workaround to prevent duplicate description code:

<target name="info" description="Shows all usable commands'>

</target>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipattern: “Spaghetti code”

® Overuse of or makes build scripts difficult to
understand

® Developers will accept stuff like this in their Ant scripts they
would never accept in Java code

® Build scripts are almost never code reviewed

® Property settings can make it difficult to determine what’s really
going to happen

® The order in which targets are called may set properties differently, resulting
in the same invocation doing different things

® Solution: code reviews, use macrodefs, simplify build scripts

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipattern: Duplicate code

® Many targets have very similar code
® Solution: allows reuse of code with differences
® Many projects have identical code

® Solution: use “master” build scripts for all projects, override and extend with
project-specific build scripts as needed

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipattern: “Mystery”’ code
® Undocumented Ant scripts are as bad as undocumented Java code

® Solution: document it!
® Build scripts need to be included in code reviews
® All targets should have documentation

® “Public” targets should have descriptions

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipattern: “Winnebago” script

® Examination of Ant scripts often reveal very large scripts are doing
many different things

® Example - a single script built/deployed a J2EE application, built/
deployed batch loaders, built and jarred an applet, and created/
configured a WebLogic domain

® Solution: Break really large scripts up into smaller scripts

® Some of these tasks were separated into a separate script - each was smaller
and more understandable than the original

® By doing this, the WeblLogic domain creation script can now be reused

® Solution: use “master” build scripts for all projects, override and
extend with project-specific build scripts as needed

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Techniques

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Technique: Treat build scripts like first-class components
® Design your build scripts
e KISS
® Code review your build scripts

® Keep build scripts up to date with new Ant features when they simplify
your code

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Technique: WVrite your own Ant tasks
® Ant tasks are easy to write
® Custom tasks can do things Ant can’t
® Custom tasks can make your build scripts more understandable

® Complex behavior is neatly tucked into a single task

° is an example of a custom Nike task

® A custom task should provide good documentation

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Technique: Use the Ant-Contrib Tasks
® Sourceforge project to create useful Ant tasks

° and iterate over a list, or list of paths, and calls a
target for each token

® Optional ability to run executions in parallel
® Number of max threads can be limited

° has an optional “keepgoing” attribute. If set to true, all iterations will
execute, even if one fails

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Technique: Use the Ant-Contrib Tasks

° gives control of possible failures
° lets you rethrow a caught exception
° allows if/then/else/elseif format of flow

® allows execution based on the switched
value

° gives task durations in
printout

® ant -listener
target

° allows timing of blocks of code

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Technique: Use the Ant-Contrib Tasks

® Ant-Contrib site: http://ant-contrib.sourceforge.net/
tasks/tasks/index.html

http://ant-contrib.sourceforge.net/tasks/tasks/index.html
http://ant-contrib.sourceforge.net/tasks/tasks/index.html
http://ant-contrib.sourceforge.net/tasks/tasks/index.html
http://ant-contrib.sourceforge.net/tasks/tasks/index.html

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Technique: Build file visualization tools

® YWorks Ant Explorer
http://www.yworks.com/en/products_antexplorer_about.htm

® Good for viewing single scripts
® |nteractive
® Shows property trees

® Plugin for Eclipse, IDEA (but no IDEA 7), standalone

® Doesn’t work with multiple scripts, macrodefs, antcalls, taskdefs

® AntScriptVisualizer
http://www.nurflugel.com/webstart/AntScriptVisualizer/

® Good for viewing single or multiple scripts

® Shows taskdefs, macrodefs, ant and antcalls

® PDF PNG, or SVG output

http://www.yworks.com/en/products_antexplorer_about.htm
http://www.yworks.com/en/products_antexplorer_about.htm
http://www.nurflugel.com/webstart/AntScriptVisualizer/
http://www.nurflugel.com/webstart/AntScriptVisualizer/

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Putting it all together:
Designing master/project build scripts

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Design goals of master/app build scripts

* Put common code into a single location
e Unify the way applications are built across projects
e Simplify the application build scripts
e Minimize the number of visible targets
* New applications should only have to write a simple build script
* Import the master build script
e Create a build.properties file with the expected properties
required by the master build file
* Goal of 10 lines or less for a vanilla project
* Bridge the differences between WebLogic and ATG J2EE projects

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Abstract target in a master script

master-build.xml

<?xml version="1.0"?>
<project name="master" >

<target name="compile” depends="

<echo >Master Compile</echo>
</target>

</project>

Output

build.xml

<?xml version="1.0"?>
<project name="cr" basedir="..
<import file=" "/>

" >

<target name="deploy" depends="compile"/>

<target name=" ”>

</target>
</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Simple inheritance of a target from a master script

master-build.xml build.xml

<?xml version="1.0"7?>

<?xml version="1.0"7?>
<project name="cr" basedir=".." >

<project name="master" >

<import file=" "/>
<target name=" ">
<echo >Master Compile</echo> <target name="deploy" depends=" "/>
</target>
</project>
</project>

Output

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Overriding a target from a master script

master-build.xml build.xml

<?xml version="1.0"7?>

<?xml version="1.0"?>
<project name="cr" basedir="..">

<project name="master" >
<import file=" "/>
<target name=" ">
<echo >Master Compile</echo> <target name="deploy" depends="compile"/>
</target>
</project>

</project>

Output

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Extending a target from a master script

master-build.xml build.xml

<?xml version="1.0"?>
<project name="cr" basedir="..">

<?xml version="1.0"?>
<import file="master-build.xml"/>

<project name="master" >

<target name="compile" depends="init">
<target name="deploy" depends="compile"/>

</target>
<target name='"compile" >
<echo>before master compile</echo>
<echo>after master compile</echo>
</target>
Output
<] >
</project> /project

Note: the child target has to honor it’s parent’s
dependencies (init) for behavior to be as expected

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Validating required properties in the app script

build.xml

<project name="cr" basedir=".."
<import file="master-build.xml"/>

<target name="deploy" depends="compile"/>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Validating required properties in the app script
master-build.xml

<?xml version="1.0"?>
<project name="master">

<macrodef name="validate-property">
<attribute name="propertyName" />
<sequential>
<fail message="(@{propertyName} is a required property"
unless="@{propertyName}" />
<echo>Validated existence of property @{propertyName}</echo>
</sequential>
</macrodef>

<target name="init">

</target>

<target name="compile" depends="init">
<super-compile/>

</target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Validating required properties in the app script

Output

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Designing the build script hierarchy

+ MasterBuildScript
— fields

— constructors

Etmethods

~ configureServer() :void

~ deployApp () : void

~ distributeApp () :void

~ distributeServerConfig() : void
startServer_Macro () :void
stopServer_Macro () : void
ivy_Macro():void
clean():void
compile () :void
docs () :void
generate () :void
help():void
init():void
testintegration () :void
testSingle():void
testUnit():void

+ MasterAtgBuildScript extends MasterBuild Script + MasterWebLogicBuildScript extends MasterBuildScript
— fields — fields
— constructors — constructors

configureServer():void ~ configureServer():void

deployApp () :void ~ deployApp () :void

distributeApp () :void ~ distributeApp():void

distributeServerConfig() : void ~ distributeServerConfig() :void

startServer_Macro () :void startServer_Macro () :void

stopServer_Macro () :void stopServer_Macro () :void

+ MasterAtgFulfillerBuildScript extends MasterAtgBuildScript
— fields
— constructors
+ deployFulfiller():void

+ distributeFulfiller() :void

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Issues encountered

* Property file resolution
* Desirable for each build script to have it’s own properties file

* Ant can’t do property resolution across <property> calls

e Solution
e Each script (master-build.xml, weblogic-master-build.xml, and

the project build.xml) have their own properties file, named
appropriately

e The script we use to run Ant (sets |DK, etc). concatenates all
properties files into one build.properties, which is read by all

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Issues encountered

* Project directory structure
e Currently, many projects have different directory strutures
and naming conventions
* Example: src vs. source
e Solutions: either
* Enforce a common directory structure and naming
convention
* Allow users to map unconventional structures via
build.properties
e Standard directory structures and naming conventions were
chosen

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Issues encountered

e Master build files location
e Subversion tag was chosen
* Projects could use with an externals
* Allows versioned control of scripts
e Tags can be made read-only (and should!)

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Summary: Advantages of Master/App Build Scripts

* Increased productivity

e All application build scripts look the same

* New build scripts are trivial to create

* Potential for errors and bugs is greatly reduced

* More centralized control over build scripts and configuration

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Examples of master and product build files

