
Writing Better Ant Scripts:
Techniques, Patterns and Antipatterns

Make your builds more manageable,
maintainable, and understandable

Douglas Bullard
Nike, Inc.

2/19/2008

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Patterns

• Antipatterns

• Techniques

• Putting it all together: Designing master/project build scripts

Topics covered in this presentation

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

“I suffered for this, now it’s your turn”

George Harrison, “I, Me, Mine”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Many scripts are complicated, hard to understand

• Old scripts are never upgraded

• Workarounds for limitations in older versions of Ant made obsolete by new
Ant tasks

• Little or no reuse within or across projects

• Every script is different, every script is new

• Differences between scripts can be confusing to developers

• Difficult to debug

• Impossible to tell what versions of libraries used

• Difficult to upgrade to new versions of Ant

Common problems with Ant build scripts:

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Standardize build scripts

• Maximize reuse of code within the project

• Maximize reuse of code across projects

• Improve readability

• Improve productivity

• Limit number of visible targets to minimize
confusion

• Allow easier upgrading to new versions of Ant

Goals of writing better Ant scripts:

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Patterns

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• One of the most powerful ways of reusing Ant code is the proper
use of <macrodef>

• Macrodefs allow you to define a “private method” with
“parameters”, called attributes

• Repeated invocations can use different values for the attributes without
conflict

Pattern: Reuse code with <macrodef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Macrodefs are better than <ant> and <antcall>

• Most uses of <antcall> can be replaced by macrodefs

• Macrodefs aren’t targets

• Putting code into macrodefs limits visibility

• Once you define a property, it’s defined forever. This limits the ability to use the
same target more than once with different property settings

• <antcall> and <ant> tasks cab get around this, but care must be taken

• <antcall> and <ant> tasks are slow!

• <antcall> runs all targets again!

• Macrodefs allow easier code flow than trying to specify “depends”

Pattern: Reuse code with <macrodef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example of code reuse with <macrodef>

This is a simple example of
repeating blocks of code
with minor differences in
structure.

<target name="compile">
 <javac srcdir="${source.java.dir}"
 classpathref="classpath.main.compile"
 destdir="${compile.dir}"
 debug="${compile.debug}"
 debugLevel="${compile.debugLevel}"
 deprecation="${compile.deprecation}"
 includeAntRuntime="false"
 optimize="${compile.optimize}">
 </javac>
 <javac srcdir="${unit.test.source.dir}"
 classpathref="classpath.test.compile"
 destdir="${compile.dir}"
 debug="${compile.debug}"
 debugLevel="${compile.debugLevel}"
 deprecation="${compile.deprecation}"
 includeAntRuntime="true"
 optimize="${compile.optimize}">
 </javac>
 <javac srcdir="${int.test.source.dir}"
 classpathref="classpath.test.compile"
 destdir="${compile.dir}"
 debug="${compile.debug}"
 debugLevel="${compile.debugLevel}"
 deprecation="${compile.deprecation}"
 includeAntRuntime="true"
 optimize="${compile.optimize}">
 </javac>
</target>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example of code reuse with <macrodef>
Notice that the same
method is used several
times with different
arguments. This makes the
main body of code easier
to read, and avoids calling a
target with <ant> or
<antcall>, getting around
“properties are forever”
issue.

Note that the “includeant”
attribute has as default of
false - you don’t have to
include it as an argument.

<target name="compile">
<compilecode srcdir= "${source.java.dir}" classpath=”classpath.main.compile”/>
<compilecode srcdir= "${unit.test.source.dir}" includeant=”true” classpath=”classpath.test.compile”/>
<compilecode srcdir= "${int.test.source.dir}" includeant=”true” classpath=”classpath.test.compile”/>

</target>

<macrodef name=”compilecode”>
 <attribute name=”srcdir”/>
 <attribute name=”includeant” default=”false”/>
 <attribute name=”classpath”/>
 <sequential>
 <javac srcdir="@{srcdir}"
 classpathref="@{classpath}"
 destdir="${compile.dir}"
 debug="${compile.debug}"
 debugLevel="${compile.debugLevel}"
 deprecation="${compile.deprecation}"
 includeAntRuntime="@{includeant}"
 optimize="${compile.optimize}">
 </javac>
 </sequential>
</macrodef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Elements let you insert whole chunks of XML

 <macrodef name="doTests">
 <attribute name=”fork” default=”no”/>
 <element name="whatToTest" optional="no"/>
 <sequential>
 <junit
 printsummary="on"
 haltonfailure="false"
 fork="@{fork}"
 showoutput="true"
 failureproperty="test.failed"
 errorproperty="test.failed">
 <sysproperty key="app.root.dir" value="${app.root.dir}"/>
 <sysproperty key="fromant" value="yep"/>
 <classpath refid="runtest.classpath"/>
 <formatter type="xml"/>
 <formatter type="brief" usefile="false"/>
 <jvmarg value="-Demma.coverage.out.file=${coverage.dir}/metadata/coverage.emma"/>
 <jvmarg value="-Demma.coverage.out.merge=true"/>
 <whatToTest/>
 </junit>
 </sequential>
 </macrodef>

Macrodef usage:
Macrodef definition:

<doTests fork=”no”>
<whatToTest>

<batchtest fork="yes"
 haltonerror="false"
 haltonfailure="false"
 todir="{junit.report.dir}">
<fileset dir="@{filesetDir}">
 <include name="@{includeName}"/>
</fileset>

</batchtest>
 </whatToTest>
</doTests>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Elements let you insert whole chunks of XML

 <macrodef name="doTests">
 <attribute name=”fork” default=”no”/>
 <element name="whatToTest" optional="no"/>
 <sequential>
 <junit
 printsummary="on"
 haltonfailure="false"
 fork="@{fork}"
 showoutput="true"
 failureproperty="test.failed"
 errorproperty="test.failed">
 <sysproperty key="app.root.dir" value="${app.root.dir}"/>
 <sysproperty key="fromant" value="yep"/>
 <classpath refid="runtest.classpath"/>
 <formatter type="xml"/>
 <formatter type="brief" usefile="false"/>
 <jvmarg value="-Demma.coverage.out.file=${coverage.dir}/metadata/coverage.emma"/>
 <jvmarg value="-Demma.coverage.out.merge=true"/>
 <whatToTest/>
 </junit>
 </sequential>
 </macrodef>

Macrodef usage:
Macrodef definition:

<doTests fork=”no”>
 <whatToTest>
 <test fork="yes"
 haltonerror="false"
 haltonfailure="false"
 name="@{className}"
 todir="${junit.report.dir}"/>
 </whatToTest>
</doTests

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Allows addition of new project module build files without changing
master build script

• Two variants of <subant>

• Execute the same build file but use different base directories for each invocation -
use “genericantfile” attribute

• Execute a specified list of build scripts, executing same target in each build script
(takes a fileset or filelist - note that order can’t be specified in fileset, so use filelist
if order matters)

Pattern: Chaining and discovery with <subant>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Chaining and discovery with <subant>

• Same build file but use different base directories

<project name="Master" default="buildModules">

 <target name="buildModules">
 <subant target="deploy" genericantfile=”./masterbuild.xml”>
 <dirset dir="../projects" includes=”April_08*”/>
 </subant>
 </target>
.
.
</project>

Invoking the “buildmodules” target
calls the “deploy” target in the
“masterbuld.xml” script using a
different basedir each time. It will
use as the basedir any directory
that begins with “April_08” that is
a subdirectory of “projects”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Chaining and discovery with <subant>

• Same target, multiple build files from a fileset:

<project name="Master" default="buildModules">

 <target name="buildModules">
 <subant target="deploy">
 <fileset dir="../projects/April_08" includes="**/build.xml"/>
 </subant>
 </target>
.
.
</project>

Invoking the “buildmodules” target
calls the “deploy” target in any
build script found in any
subdirectory of “projects/April_08”

Invoking the “buildmodules” target
calls the “deploy” target in any
build script found in any
subdirectory of “projects/April_08”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Importing and overriding of master scripts can be done, mimicking
object inheritance and overriding of behavior

• <import> can be used to import another Ant script into the
current script

• Common code can be placed into the master build script

• Project build scripts only contain unique code for that project

• When a script is imported into another script, the importing script can
override targets from the imported script

Pattern: Ant script inheritance with “Master” build scripts

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Abstract Targets

• Targets can be referenced in the “master” script which aren’t defined there

• Must be defined in the importing script, or else Ant will fail when run

• No-op Targets

• Empty targets defined in the “master” script which do nothing

• May be overridden in the importing script for more functionality

Pattern: Ant script inheritance with “Master” build scripts

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example “build-master.xml”
Note that this does not
define targets clean or ivy,
they must be defined by the
importing file.

The target deploy is a no-
op target – no work will be
done unless they is
overridden.

init-properties defines two
properties

<project name="master" default=”deploy” >
 <target name="init" depends="clean, init-properties"/>

 <target name="init-properties">
 <property name="source.dir" value="./src"/>
 <property name="build.dir" value="./build"/>
 </target>

 <target name="compile" depends="init,ivy">
 <javac srcdir="${source.dir}" destdir="${build.dir}/classes">
 <classpath refid="build.classpath"/>
 </javac>
 </target>

 <target name="jar" depends="compile">
 <jar destfile="${build.dir}/lib/${jar.name}"
 basedir="${build.dir}/classes"/>
 </target>

 <target name="deploy"/>
</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Example of importing file
The master file is imported using
the <import> task.

This file only needs to define the
abstract targets clean, and ivy,
specified in the master build file,
plus any custom targets.

The init-properties and deploy
targets in the master file are
overriden in this example

<project name="Some Project" default="deploy">
 <import file="build-master.xml"/>

 <target name="init-properties">
 <property file="build.properties"/>
 </target>

 <target name="clean">
 <delete includeemptydirs="true" failonerror="true" quiet="true">
 <fileset dir="${target.dir}/classes"/>
 <fileset dir="${target.dir}/dependencies"/>
 <fileset dir="${target.dir}/dist"/>
 <fileset dir="${target.dir}/stage"/>
 </delete>
 </target>

 <target name="ivy" unless="no-ivy">
 <ivy-resolve file="${ivy.dep.file}" transitive="true"/>
 <ivy-retrieve sync="true"/>
 </target>

 <target name="deploy" depends="jar">
 ...
 </target>
</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• “Build Failed” isn’t very informative

• Missing expected properties don’t fail build

• Provide more useful information by using <fail>

Pattern: Using <fail>

<fail unless "thisdoesnotexist" message=”Missing property thisdoesnotexist”/>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Build scripts don’t always tell what version you’re using

• Jars don’t always have versioned names or manifests with
the version in them

• This leads to library dependency hell when setting up
projects

• Do you really have all the jars (or the right versions)
needed for Hibernate? Or Spring?

• Version conflicts can cause unpredictable behavior

Pattern: Managing library dependencies

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Solution: Which is more informative? Something
like this...

Pattern: Managing library dependencies

 <fileset dir="${global.lib.dir}">
 <include name="commons-beanutils.jar"/>
 <include name="commons-collections.jar"/>
 <include name="commons-digester.jar"/>
 <include name="commons-logging.jar"/>
 <include name="commons-validator.jar"/>
 <include name="commons-resources.jar"/>
 <include name="jakarta-oro.jar"/>
 <include name="struts.jar"/>
 <include name="struts-el.jar"/>
 <include name="commons-lang.jar"/>
 <include name="jstl.jar"/>
 <include name="standard.jar"/>
 <include name="commons-pool.jar"/>
 <include name="displaytag.jar"/>
 </fileset>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Pattern: Managing library dependencies
• Solution: Which is more informative? Or this...

<dependencies>
 <dependency org="org.apache" name="log4j" rev="1.2.8" conf="dist-ear"/>
 <dependency org="org.hibernate" name="hibernate" rev="3.2.0.ga" conf="dist-ear,source,javadoc"/>
 <dependency org="org.apache" name="struts" rev="1.3.8" conf="dist-ear,source"/>
 <dependency org="org.apache" name="struts-el" rev="1.3.8" conf="dist-ear,source"/>
 <dependency org="org.springframework" name="spring" rev="2.0" conf="dist-ear"/>
</dependencies>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Solution: Use a dependency manager

• Ivy + Ant ~= Maven dependency management

• Ivy is an Apache project

• Jars are downloaded, cached in local repository, and your specified project library
location

• Ivy can store libraries with generic names, no versions – don’t need to change
scripts or IDE projects when upgrading

• Ivy can use the ibiblio and Maven2 repositories, the Ivy repository, or your own
(corporate shared libraries, anyone?)

• This gives the architect control over what library versions are available for use in
projects

• Multiple versions of libraries can be used in different projects without confusion

• Easy distribution of libraries allows for easy packaging

Pattern: Managing library dependencies

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Ivy supports transitive dependencies

• Ivy not only brings in your project dependencies, but any dependencies they might
have as well, and the dependencies of the dependencies of the dependencies, etc

• When you create your own shared libraries, you write an XML dependency file
for the libraries, declaring its own dependencies, then whenever you use this
libraries you simply declare a dependency on it.

• Ivy produces browser-viewable dependency reports when run, and has an .XSL
template for viewing Ivy config files in browser

Pattern: Managing library dependencies

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• More information on Ivy at http://ant.apache.org/ivy/index.html

Pattern: Managing library dependencies

http://ant.apache.org/ivy/index.html
http://ant.apache.org/ivy/index.html

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Tasks not native to Ant need their jars imported into Ant

• Most people place these in the Ant/lib dir

• Most people are wrong

• Solution: Put these into an external directory, and explicitly declaring
the classpath for the task in the taskdef

• This will make upgrading to the next version of Ant much easier

• Example:

Pattern: Proper location of external Ant libraries

<taskdef name="commit" classname="net.nike.build.ant.task.svn.SvnCommitTask">
 <classpath>
 <fileset dir="${build.lib.dir}">
 <include name="nikesvn.jar"/>
 <include name="javasvn.jar"/>
 <include name="commons-collections.jar"/>
 </fileset>
 </classpath>
</taskdef>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Antipatterns

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Do all those targets really need to be visible?

• Solution: reduce “public” visibility

• Use macrodefs, where it’s possible to make things “private”

• Prefacing target names with a hyphen makes them impossible to execute from the
command line (i.e., “-compile-jaxb”)

• Fill out description attribute for all “public” targets

• Include a “info” or “usage” target, with a complete list of the public targets and their
documentation

• Make “info” your default target

• Workaround to prevent duplicate description code:

Antipattern: Too many targets

 <target name="info" description="Shows all usable commands">
 <exec executable="cmd">
 <arg value="/c"/>
 <arg value="build"/>
 <arg value="-p"/>
 </exec>
 </target>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Overuse of <ant> or <antcall> makes build scripts difficult to
understand

• Developers will accept stuff like this in their Ant scripts they
would never accept in Java code

• Build scripts are almost never code reviewed

• Property settings can make it difficult to determine what’s really
going to happen

• The order in which targets are called may set properties differently, resulting
in the same <ant> invocation doing different things

• Solution: code reviews, use macrodefs, simplify build scripts

Antipattern: “Spaghetti code”

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Many targets have very similar code

• Solution: <macrodef> allows reuse of code with differences

• Many projects have identical code

• Solution: use “master” build scripts for all projects, override and extend with
project-specific build scripts as needed

Antipattern: Duplicate code

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Undocumented Ant scripts are as bad as undocumented Java code

• Solution: document it!

• Build scripts need to be included in code reviews

• All targets should have documentation

• “Public” targets should have descriptions

Antipattern: “Mystery” code

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Examination of Ant scripts often reveal very large scripts are doing
many different things

• Example - a single script built/deployed a J2EE application, built/
deployed batch loaders, built and jarred an applet, and created/
configured a WebLogic domain

• Solution: Break really large scripts up into smaller scripts

• Some of these tasks were separated into a separate script - each was smaller
and more understandable than the original

• By doing this, the WebLogic domain creation script can now be reused

• Solution: use “master” build scripts for all projects, override and
extend with project-specific build scripts as needed

Antipattern: “Winnebago” script

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Techniques

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Design your build scripts

• KISS

• Code review your build scripts

• Keep build scripts up to date with new Ant features when they simplify
your code

Technique: Treat build scripts like first-class components

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Ant tasks are easy to write

• Custom tasks can do things Ant can’t

• Custom tasks can make your build scripts more understandable

• Complex behavior is neatly tucked into a single task

• <list-files> is an example of a custom Nike task

• A custom task should provide good documentation

Technique: Write your own Ant tasks

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Sourceforge project to create useful Ant tasks

• <for> and <foreach> iterate over a list, or list of paths, and calls a
target for each token

• Optional ability to run executions in parallel

• Number of max threads can be limited

• <for> has an optional “keepgoing” attribute. If set to true, all iterations will
execute, even if one fails

Technique: Use the Ant-Contrib Tasks

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• <trycatch> gives control of possible failures

• <throw> lets you rethrow a caught exception

• <if> allows if/then/else/elseif format of flow

• <switch> allows execution based on the switched
value

• AntPerformanceListener gives task durations in
printout

• ant -listener net.sf.antcontrib.perf.AntPerformanceListener
target

• <stopwatch> allows timing of blocks of code

Technique: Use the Ant-Contrib Tasks

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• Ant-Contrib site: http://ant-contrib.sourceforge.net/
tasks/tasks/index.html

Technique: Use the Ant-Contrib Tasks

http://ant-contrib.sourceforge.net/tasks/tasks/index.html
http://ant-contrib.sourceforge.net/tasks/tasks/index.html
http://ant-contrib.sourceforge.net/tasks/tasks/index.html
http://ant-contrib.sourceforge.net/tasks/tasks/index.html

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

• YWorks Ant Explorer
http://www.yworks.com/en/products_antexplorer_about.htm

• Good for viewing single scripts

• Interactive

• Shows property trees

• Plugin for Eclipse, IDEA (but no IDEA 7), standalone

• Doesn’t work with multiple scripts, macrodefs, antcalls, taskdefs

• AntScriptVisualizer
http://www.nurflugel.com/webstart/AntScriptVisualizer/

• Good for viewing single or multiple scripts

• Shows taskdefs, macrodefs, ant and antcalls

• PDF, PNG, or SVG output

Technique: Build file visualization tools

http://www.yworks.com/en/products_antexplorer_about.htm
http://www.yworks.com/en/products_antexplorer_about.htm
http://www.nurflugel.com/webstart/AntScriptVisualizer/
http://www.nurflugel.com/webstart/AntScriptVisualizer/

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Putting it all together:
Designing master/project build scripts

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Design goals of master/app build scripts

• Put common code into a single location
• Unify the way applications are built across projects
• Simplify the application build scripts
• Minimize the number of visible targets
• New applications should only have to write a simple build script
• Import the master build script
• Create a build.properties file with the expected properties

required by the master build file
• Goal of 10 lines or less for a vanilla project

• Bridge the differences between WebLogic and ATG J2EE projects

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Abstract target in a master script

 Output
ant deploy
Buildfile: build.xml

compile:
 [echo] Master Compile

deploy:

BUILD SUCCESSFUL

 build.xml
<?xml version="1.0"?>
<project name="cr" basedir=".." >
<import file="master-build.xml"/>

 <target name="deploy" depends="compile"/>

<target name=”init”>
 .
 .
 .
</target>

</project>

master-build.xml
<?xml version="1.0"?>
<project name="master" >

 <target name="compile” depends=”init">
 <echo >Master Compile</echo>
 </target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Simple inheritance of a target from a master script

 Output
ant deploy
Buildfile: build.xml

compile:
 [echo] Master Compile

deploy:

BUILD SUCCESSFUL

 build.xml
<?xml version="1.0"?>
<project name="cr" basedir=".." >
<import file="master-build.xml"/>

 <target name="deploy" depends="compile"/>

</project>

master-build.xml
<?xml version="1.0"?>
<project name="master" >

 <target name="compile">
 <echo >Master Compile</echo>
 </target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Overriding a target from a master script

 Output
ant deploy
Buildfile: build.xml

compile:
 [echo] Child compile

deploy:

BUILD SUCCESSFUL

 build.xml
<?xml version="1.0"?>
<project name="cr" basedir="..">
<import file="master-build.xml"/>

 <target name="deploy" depends="compile"/>

 <target name="compile">
 <echo>Child compile</echo>
 </target>

</project>

master-build.xml
<?xml version="1.0"?>
<project name="master" >

 <target name="compile">
 <echo >Master Compile</echo>
 </target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Extending a target from a master script

 Output
ant deploy
Buildfile: build.xml

compile:
 [echo] before master compile
 [echo] Master super.compile
 [echo] after master compile

run:

BUILD SUCCESSFUL

master-build.xml
<?xml version="1.0"?>
<project name="master" >
 <target name="compile" depends="init">
 <super-compile/>
 </target>

 <macrodef name="super-compile">
 <sequential>
 <echo>Master super.compile</echo>
 </sequential>
 </macrodef>

</project>

Note: the child target has to honor it’s parent’s
dependencies (init) for behavior to be as expected

 build.xml
<?xml version="1.0"?>
<project name="cr" basedir="..">
<import file="master-build.xml"/>

 <target name="deploy" depends="compile"/>

 <target name="compile" depends=”init”>
 <echo>before master compile</echo>
 <super-compile/>
 <echo>after master compile</echo>
 </target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Validating required properties in the app script

 build.xml
<?xml version="1.0"?>
<project name="cr" basedir="..">
 <import file="master-build.xml"/>

 <property name=”project.name” value=”ClaimsAndReturns”/>
 <property name=”release.number” value=”5.0”/>

 <target name="deploy" depends="compile"/>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Validating required properties in the app script
 master-build.xml
<?xml version="1.0"?>
<project name="master">

 <macrodef name="validate-property">
 <attribute name="propertyName"/>
 <sequential>
 <fail message="@{propertyName} is a required property"
 unless="@{propertyName}"/>
 <echo>Validated existence of property @{propertyName}</echo>
 </sequential>
 </macrodef>

 <macrodef name="validate-properties">
 <sequential>
 <validate-property propertyName="project.name"/>
 <validate-property propertyName="release.number"/>
 <validate-property propertyName="required.property"/>
 </sequential>
 </macrodef>

 <target name="init">
 <validate-properties/>
 </target>

 <target name="compile" depends="init">
 <super-compile/>
 </target>

</project>

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Validating required properties in the app script

 Output
ant deploy
Buildfile: build.xml

init:
 [echo] Validated existence of property project.name
 [echo] Validated existence of property release.number

BUILD FAILED
build/master-build.xml:66: The following error occurred while executing
this line:
build/master-build.xml:60: The following error occurred while executing
this line:
build/master-build.xml:47: required.property is a required property

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Designing the build script hierarchy

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Issues encountered
• Property file resolution
• Desirable for each build script to have it’s own properties file
• Ant can’t do property resolution across <property> calls
• Solution
• Each script (master-build.xml, weblogic-master-build.xml, and

the project build.xml) have their own properties file, named
appropriately

• The script we use to run Ant (sets JDK, etc). concatenates all
properties files into one build.properties, which is read by all

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Issues encountered
• Project directory structure

• Currently, many projects have different directory strutures
and naming conventions

• Example: src vs. source
• Solutions: either
• Enforce a common directory structure and naming

convention
• Allow users to map unconventional structures via

build.properties
• Standard directory structures and naming conventions were

chosen

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Issues encountered
• Master build files location

• Subversion tag was chosen
• Projects could use with an externals
• Allows versioned control of scripts
• Tags can be made read-only (and should!)

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Summary: Advantages of Master/App Build Scripts
• Increased productivity
• All application build scripts look the same
• New build scripts are trivial to create
• Potential for errors and bugs is greatly reduced
• More centralized control over build scripts and configuration

Writing Better Ant Scripts:
Techniques, Patterns, and Antipatterns

Examples of master and product build files

