
Struts and JavaServer Faces

Ken Paulsen
Staff Engineer
Sun Microsystems, Incorporated
(Slides by Craig McClanahan)

2 | Struts and JavaServer Faces

Agenda

● Brief description of JavaServer Faces
● Struts or JavaServer Faces?
● Future directions
● Summary
● Creator Demo

3 | Struts and JavaServer Faces

JavaServer Faces Is ...

 A server side user interface
 component framework for

 Java-based web applications

4 | Struts and JavaServer Faces

Background

● Web applications a popular entry point
for developers new to Java

● Powerful foundational technologies:
– Servlet API
– JavaServer Pages (JSP)
– JSP Standard Tag Library (JSTL)
– Portlet API

● But no common component standard

5 | Struts and JavaServer Faces

Background

● Web applications also represent a key
opportunity to attract a new developer
market segment to Java
– Corporate developers

● Attracting this population required
something different
– Ease of use is the #1 criteria

6 | Struts and JavaServer Faces

Fundamental Requirements

● Accessible to corporate developers
● Accessible to tools
● Client device neutral
● Usable with or without JSP
● Usable with or without HTML
● Scalable to enterprise applications

7 | Struts and JavaServer Faces

Basic Capabilities

● Extensible user interface (UI)
component model

● Flexible rendering model
● Event and listener handling model
● Per-component validation framework
● Basic page navigation support
● Internationalization and accessibility

8 | Struts and JavaServer Faces

Architecture Overview

● UIComponent – Basic component API
– JavaBean class with default base

implementation class (UIComponentBase)
– Contains render-independent properties

● Standard generic components:
– Examples: UICommand, UIInput, UIOutput

● Concrete component subclasses with
HTML-specific properties and behaviors

9 | Struts and JavaServer Faces

Value Binding Expressions

● Components may have a local value
– Rendered at output time
– Updated on subsequent form submit

● Components may be bound to a model
tier value
– #{customer.address.city}
– Syntax based on JSTL/JSP 2.0 EL
– Semantics identical when rendering

● Nearly all properties may be bound

10 | Struts and JavaServer Faces

Method Binding Expressions

● Specialized version of value binding
expression

● Last element of the expression points
at a method instead of a property

● Used to bind command components to
the corresponding action method that
should be called when component is
activated

11 | Struts and JavaServer Faces

Events and Listeners

● Standard JavaBeans event pattern
● Strongly typed events and listeners
● Two standard events:
– ActionEvent – broadcast when a UICommand

component is activated by the user
– ValueChangeEvent – broadcast when a UIInput

component has been validated, and the new
value differs from the old value

12 | Struts and JavaServer Faces

Converters and Validators

● Converters – Plugins for String-Object
conversion
– Render time – Object to String
– Update time – String to Object

● Validators – Plugins for correctness
checking

● Default implementations for common
use cases

13 | Struts and JavaServer Faces

Application Interface

● JavaServer Faces provides a default
ActionListener for every UICommand
– UICommand may contain a method binding to

an action method to be executed
– Each UICommand may have its own method, or

they may share
– Action method invoked “immediately” or after

validation
– Return logical outcome used for navigation

14 | Struts and JavaServer Faces

Page Navigation Model

● Pluggable NavigationHandler called to
perform navigation duties

● Default implementation uses
configured navigation rules based on:
– What page submitted this form?
– Which action method was invoked?
– What logical outcome was returned?

● Result: navigate to new page or
redisplay old page

15 | Struts and JavaServer Faces

Managed Bean Creation Facility

● In a value binding or method binding
expression, the first element is special
– “Magic” values – provide access to request or

application data
– “Non-magic” values – search request, session,

and application scope (like <jsp:useBean>)
– If not present, automatically instantiate a

bean, put it in scope, and populate properties

● Generalized verison of Struts form
beans

16 | Struts and JavaServer Faces

Business Logic In Backing Beans

● Most JavaServer Faces applications will
organize event handling code for a
particular form into a corresponding
JavaBean class (“backing bean”)

● Typical backing bean is also a
managed bean, put in request scope

● Similar in concept to ASP.Net “code
behind files”

17 | Struts and JavaServer Faces

Request Processing Lifecycle

18 | Struts and JavaServer Faces

JSF In Action

● The JSF RI ships with several samples
– samples/jsf-cardemo.war

● Can be dropped into any Servlet 2.3 /
JSP 1.2 (i.e. J2EE 1.3 or later) container

● We will see a demo using Creator

19 | Struts and JavaServer Faces

Agenda

● Brief description of JavaServer Faces
● Struts or JavaServer Faces?
● Future directions
● Summary
● Creator Demo

20 | Struts and JavaServer Faces

Struts or JavaServer Faces?

● Long answer on Craig's blog:
– http://blogs.sun.com/roller/page/craigmcc
– /20040927#struts_or_jsf_struts_and

● Strusts and JSF provide 2 architectures
for building Model 2 based webapps

● But is it an either-or choice?
● No – You can use them together

21 | Struts and JavaServer Faces

Struts+Faces Integration Library

● Design goals:
– Take an existing Struts-based application ...
– Convert one JSP page at a time to use JSF

components instead of Struts HTML tags ...
– Tweak the mapping information as needed in

struts-config.xml ...
– And make no changes in your form beans or

actions

● Must work with Validator and Tiles

22 | Struts and JavaServer Faces

Struts+Faces Integration Library

● The design goals were achieved
● Struts+Faces Integration Library

available at Apache:
– http://svn.apache.org/builds/struts/nightly/struts-faces

● Converted application will use JSF
components, but not JSF lifecycle

● Can convert actions later if desired

23 | Struts and JavaServer Faces

Demo – Integration Library

● The integration library ships with two
samples (one with Tiles, one without)

● Can be dropped into any Servlet 2.3 /
JSP 1.2 (i.e. J2EE 1.3 or later) container

● Let's look at these applications in
action

● And browse the source code

24 | Struts and JavaServer Faces

Choosing What To Use

● Three choices here:
– Pure Struts-based architecture
– Pure JavaServer Faces-based architecture
– Hybrid Struts+Faces with Integration Library

● More than one right answer
– Not a one size fits all environment

● Different criteria will have different
weights for different users

25 | Struts and JavaServer Faces

My Recommendations

● Existing Struts-based application?
– Consider migration to JSF via integration

library, when more sophisticated UI
components are needed

– Migrating form beans and actions is optional

● New application to be developed?
– Sufficient JSF expertise and functionality? Use

JSF (with tools if desired)
– Else feel free to (continue) adopting Struts
– Hybrid solution possible, but not

recommended

26 | Struts and JavaServer Faces

Agenda

● Brief description of JavaServer Faces
● Struts or JavaServer Faces?
● Future directions
● Summary
● Creator Demo

27 | Struts and JavaServer Faces

Future Directions

● Struts 1.x is a robust, mature
framework:
– 1.0 released in 2001
– Subsequent versions backwards compatible

● Struts 1.x was (and is) a defacto
standard

● Several other frameworks have
emerged over the last four years

● And JavaServer Faces was standardized

28 | Struts and JavaServer Faces

Future Directions

● I believe it is time for Struts to harvest
what we've learned over the years:
– Good ideas from other frameworks
– Embrace JavaServer Faces standard APIs

● If we knew then what we know now,
what would Struts look like?

● A new approach to Struts 2.x will let us
find out
– While 1.x development continues

29 | Struts and JavaServer Faces

Future Directions

● Craig has proposed a new architecture
for Struts 2.x, called “Shale”:
– http://wiki.apache.org/struts/StrutsShale

● Fundamentally based on JSF and the
plug in architecture it supports

● Decomposes the “monolithic” Struts
request processor

30 | Struts and JavaServer Faces

Future Directions

● Focused functionality at different
levels:
– ViewController – Backing bean per page with

very simple lifecycle callbacks (“View Helper”
design pattern)

– DialogController – Framework for managing
user interaction requiring more than one HTTP
request to complete

– ApplicationFilter – Location for centralized
functionality (like access control checks)

31 | Struts and JavaServer Faces

Future Directions

● Shale has not (yet) been accepted by
the Struts developers as the formal
choice for the next generation
– Discussions continue on developer list
– Likely to become an accepted subproject

● Shale needs to gather a community to
become accepted
– Subscribe to developer list to participate

● Send an emtpy message to dev-
subscribe@struts.apache.org

32 | Struts and JavaServer Faces

Future Directions

● In the mean time, Struts 1.3 is actively
being developed
– Refactor request processor based on Chain of

Responsibility design pattern
– Reorganize artifacts into core library and

separate additional modules
– Focus remains on being fundamentally

backwards compatible

33 | Struts and JavaServer Faces

Agenda

● Brief description of JavaServer Faces
● Struts or JavaServer Faces?
● Future directions
● Summary
● Creator Demo

34 | Struts and JavaServer Faces

Summary

● Struts is a mature, robust, framework
for building web applications based on
the MVC design pattern

● JavaServer Faces is the standard Java
API for building user interface
components for web applications

● The two can be used together as
needed

35 | Struts and JavaServer Faces

Agenda

● Brief description of JavaServer Faces
● Struts or JavaServer Faces?
● Future directions
● Summary
● Creator Demo

Struts and JavaServer Faces

ken.paulsen@sun.com

37 | Struts and JavaServer Faces

A Very Common Question

 Now that JavaServer Faces
 is out, does that mean

 Struts is obsolete?

38 | Struts and JavaServer Faces

Agenda

● Introduction
● Brief description of JavaServer Faces
● Comparison of implementation

techniques
● Decision criteria for choosing
● Summary
● Brief description of Struts

39 | Struts and JavaServer Faces

The Origin of Struts

● The JavaServer Pages (JSP)
Specification (version 0.91) described
two fundamental approaches:
– Model 1 – A resource is responsible for both

creating a page's markup and processing the
subsequent form submit

– Model 2 – Separate resources are responsible
for creating a page's markup and processing
the subsequent form submit

40 | Struts and JavaServer Faces

The Origin of Struts

● The second approach sounded better
– Resources for creating markup and accessing

databases are separated ...
– So they can be built by different people ...
– Perhaps using different tools

● So, I built a “home grown”
architecture based on the Model-View-
Controller (MVC) design pattern

41 | Struts and JavaServer Faces

Model-View-Controller (MVC)

● Model – Persistent data and the
business logic that processes it
– In large applications, often subdivided

● View – The interface with which the
user directly interacts

● Controller – Management software to
enforce flow control and dispatch
logical functions to physical resources

42 | Struts and JavaServer Faces

MVC as Implemented in Struts

 Browser

 Controller Business
 Logic

 View Model
 Data

(1) Submit

(2) Dispatch

(3) Update,
 Get

(4) Dispatch

(5) Pull

(6) Render

43 | Struts and JavaServer Faces

Struts Features – Model Tier

● Struts includes only minimal features
● But you can integrate any desired

approach

44 | Struts and JavaServer Faces

Struts Features – View Tier

● Form Beans
– Server-side state of input fields on a form
– Classic (JavaBean) or DynaBean (configured

properties, no separate class) style

● Validation Framework
– Abstract validation rules into separate resource
– Always enforced on the server side
– Optionally generates JavaScript for client side

checking as well

45 | Struts and JavaServer Faces

Struts Features – View Tier

● JSP Custom Tag Libraries
– Bean and Logic – General support (superceded

by JSTL)
– Html – Render HTML markup
– Nested – Navigate bean hierarchies
– Tiles – Layout management (see next page)

● Extended Versions (struts-el)
– Integrate expression language support
– Not required in JSP 2.0 or later

46 | Struts and JavaServer Faces

Struts Features – View Tier

● Tiles Framework:
– Templating for common look and feel
– Definitions created in JSP page or separate XML

resource
– Definitions can inherit from other definitions
– Advanced techniques for sharing information

between tiles
– Fully integrated into Struts navigation support

47 | Struts and JavaServer Faces

Struts Features – Controller Tier

● Standard configuration resource for
defining desired behavior
– Mapping URLs to Action classes
– Mapping logical Forwards to physical pages
– Defining form beans and properties
– Configuring Action behavior

● Form bean creation, validation, input page

– Generalized exception handling
– Localization resources

48 | Struts and JavaServer Faces

Struts Features – Controller Tier

● Standard request processing lifecycle
– Extract action mapping path
– Select locale (if necessary)
– Select action mapping to utilize
– Role-based authorization checks
– Instantiate and populate form bean
– Server side validation
– Invoke application action
– Forward to requested view tier resource

49 | Struts and JavaServer Faces

Struts Features – Controller Tier

● Sub-application modules
– Logically divide a single web application into

several “mini-applications”
– Session state is shared across modules

● Standard Action implementations
– Forward to or include other URLs
– Dispatch to method based on parameter
– Switch to different module

