
Stalking the Lost Write:
Memory Visibility in

Concurrent Java
Jeff Berkowitz, New Relic

December 2013

This presentation is is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike International License 4.0.

It is attributed to Jeff Berkowitz, New Relic Inc.
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Monday, December 30, 13

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

The Computer We Imagine

 CPU

Memory

WriteRead

. . .
statement-1;
statement-2;
if (b) statement-3;
while (cond) {
 statement-4;
}
. . .

Monday, December 30, 13

When we first learned to program, we all learned it like this. All work done by statements {1..N} that have already
executed is visible to statments {N+1, ...} when they later execute. Call it the intuitive rule of program order.

The Compiler We Imagine

x++;

y++;

mov mem.x, reg1
incr reg1
mov reg1, mem.x

mov mem.y, reg1
incr reg1
mov reg1, mem.y

Java Assembly Language*

* Typical assembly language - no particular CPU
Monday, December 30, 13

Later we learned that computers didn’t really execute what we wrote; rather, a program called a “compiler”
translated our program into “machine language”. But we could still imagine the intuitive rule of program order for
machine language.

The Compiler We Get

x++;

y++;

mov mem.x, reg1
mov mem.y, reg2

incr reg1
mov reg1, mem.y

incr reg2
mov reg2, mem.x

Java Assembly Language

Monday, December 30, 13

Eventually, perhaps by debugging an optimized build, we learn that it’s not so simple. Example: reads take time,
so compilers learned to issue them in advance.

The End Result

x++;

y++;

mov mem.x, reg1
mov mem.y, reg2

incr reg1
mov reg1, mem.x

incr reg2
mov reg2, mem.y

Java Assembly Language

rd.issue(x)
rd.issue(y)

resp.mov(r1)
incr r1
wr.async(r1, x)

resp.mov(r2)
incr r2
wr.async(r2, y)

Hardware Level*

* Typical micro operations - no particular CPU
Monday, December 30, 13

The hardware splits reads into two parts, issue and collect-response. The compiler writer recognized that issuing
the read for “y” before the increment of “x” would allow the hardware to overlap issuing the read of “y” with the
memory cycle for “x”. Also, the writes are asynchronous where possible.

The Multiprocessor We Imagine

 CPU

Memory

WriteRead

 CPU

WriteRead

There are no caches or memory buffering here
Monday, December 30, 13

Now let’s consider the intuitive rule of program order on an idealized multiprocessor.

Code Example 1

Do not emulate this example

void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

First CPU (“thread”) Second CPU

Possible outcomes for x and y?

int x, y, a, b; // all zero

Monday, December 30, 13

Possible Execution Trace

Time

Outcome: x == 1, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Monday, December 30, 13

Possible Trace #2

Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

Monday, December 30, 13

Possible Trace #3

Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()
x = b

a = 2

m2()

Monday, December 30, 13

Possible Trace #4

Time

Outcome: x == 0, y == 2

y = a

b = 1

m1()

x = b

a = 2

m2()

Monday, December 30, 13

Oh, And #5 and #6

Time

Outcome: x == 0, y == 0

y = a

b = 1

m1()

x = b

a = 2

m2()

y = a

b = 1

m1()

x = b

a = 2

m2()

x == 0, y == 0

Monday, December 30, 13

Is That It?

• It looks like x or y must be 0 in the result

• Makes sense: the first statement of
m1() grabs a 0, and so does the first
statement of m2()

• Is our reasoning correct?

Monday, December 30, 13

Surprisingly, No

Counterintuitively, the compiler can reverse the order

void m1() {
 y = a;
 b = 1;
}

mov #1, mem.b
mov mem.a, mem.y

void m2() {
 x = b;
 a = 2;
}

mov #2, mem.a
mov mem.b, mem.x

Monday, December 30, 13

When the order of the two statements is reversed in either m1 or m2, the intuitive rule of progam order is not
violated because neither method tries to observe the values of these variables. Compilers do not understand
cross-thread visibility!

So This is Also Possible

b = 1

y = a

Time

Outcome: x == 1, y == 2

a = 2

x = b

m1()

m2()

*
Monday, December 30, 13

Again, neither m1() nor m2() individually attempts to observe the result of its own writes, and “compilers don’t do
threads.”

And It Gets Worse...

 CPU 1

Memory

WriteRead

Store Buffer

 CPU 2

Store Buffer

This is just an example. It’s way worse than this.

Cache Memory

WriteRead

Cache Memory

Monday, December 30, 13

Hardware designers invented caches and store buffers and other performance enhancing hardware tricks. In
general, all these optimizations are considered acceptable so long as the intuitive rule of program order isn’t
violated. We’ve just seen that the intuitive rule of program order can allow for confusing compiler behavior. Now
let’s look at the hardware.

Code Example 2

Credit: http://bit.ly/pjug2013-mckenney-
parallel, Appendix C, p. 231 et seq.

void m1() {
 a = 1;
 b = 1;
}

void m2() {
 while (b == 0)
 ;
 assert(a == 1);
}

First CPU (“thread”) Second CPU

int a, b; // both zero

Monday, December 30, 13

http://bit.ly/pjug2013-mckenney-parallel
http://bit.ly/pjug2013-mckenney-parallel
http://bit.ly/pjug2013-mckenney-parallel
http://bit.ly/pjug2013-mckenney-parallel

Initial State

 CPU 1

Memory

WriteRead

Store Buffer

 CPU 2

Store Buffer

Cache

WriteRead

Cacheb == 0 a == 0

MESI
Coherency

protocol

Monday, December 30, 13

Caches communicate using MESI protocol. Time doesn’t permit going into the protocol in detail, so we’ll just cover
one representative example. See the reference above.

Step 1

 CPU 1

Memory

WriteRead

 CPU 2

Store Buffer

Cache

Read

Cacheb == 0

m1() m2()

a = 1

Can I have b?

Invalidate a ...

a == 0

Monday, December 30, 13

CPU 1 writes “a” and this write is held in the store buffer. CPU 1 also send an “invalidate” message to all other
caches, but invalidate messages can be queued.

Step 2

 CPU 1

Memory

WriteRead

 CPU 2

Store Buffer

Cache

WriteRead

b = 1 a == 0

m1() m2()

a = 1

Yes, after I
update it.

b == 1

Pending ...

Monday, December 30, 13

CPU 1 then writes 1 to “b” and CPU 2 tries to test it. The timing happens to work out so that the updated value of
“b” is provided to CPU 2. The MESI messages cross like ships in the night - another kind of “reordering”, this time
by the hardware.

Sigh

 CPU 1

Memory

WriteRead

 CPU 2

Store Buffer

Cache

WriteRead

b = 1

m1() m2()

a = 1

assert(a == 1)
 ... fails.

Pending ...

a == 0 b == 1

Monday, December 30, 13

With b == 1 in hand, CPU 2 tests the variable a and fails.

Too Late!

 CPU 1

Memory

WriteRead

 CPU 2

Store Buffer

Cache

WriteRead

b = 1 b == 1

m1() m2()

a = 1

a == 0

If the compiler doesn’t get you, the hardware still can *

Performed.

Monday, December 30, 13

Eventually the invalidate is processed, but the damage has been done.

Where Are We?

• The “intuitive rule of program order” is
sufficient for single-threaded programs

• Applying the rule to each of multiple
threads leads to surprising results

• For multiprocessors, we need better a
better rule.

Happily, some of the best and brightest have thought about this.
Monday, December 30, 13

This presentation is about memory “visibility” because writes that occur first on a given CPU do not necessarily
become visible in the same order on another CPU. This makes it extremely difficult to reason about our programs.

“Good” and “Bad” Traces

• Why are some traces better than others?

• “Good” traces are equivalent to some
serial execution of the parallel steps

• A parallel trace that is equivalent to some
serial execution is said to be Sequentially
Consistent (SC).

SC programs are programs we can reason about
Monday, December 30, 13

One way of explaining “some serial execution” is to imagine executing on one CPU with very rapid context
switching. A trace that is possible on a single CPU with very rapid context switching is SC.

Traces (Example 1)
void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

Given:

y = a

b = 1

m1()
x = b

a = 2

m2()

Good (SC)

y = a

b = 1

m1()

x = b

a = 2

m2()

Good
(SC) a = 2

x = b

b = 1

y = a

m2()

m1()

Bad (not SC)

Monday, December 30, 13

Intuitively, again, the left two traces are “good”, the third one not. To us, it’s common sense. The point to the
memory model is to give the compiler, runtime and hardware some common sense. ;-)

Language Designer’s
Choices

• Could force everything to be SC ... but

• Most actions by a thread are irrelevant
to other threads

• Significant performance penalty

• Resulting language uncompetitive (?)

• Therefore ... as designed, Java requires
help from the programmer to ensure SC.

Monday, December 30, 13

Once the problem was understood, the designers of the Java language were faced with a choice: make everything
SC (at huge cost), or require the programmer to define the synchronization points. They chose the latter.

Java Memory Model

• Introduced in Java 1.5 (2004)

• Section 17.4 and 17.5 of JLS

• Based on the concept of a partial order

• Most memory operations are unordered

• Happens-before establishes ordering in
specific memory operations

http://bit.ly/PJUG2013-JLS-17
Monday, December 30, 13

The memory model itself reads like a math paper. It was not introduced until Java had been around for 8 years.
Early Java virtual machines (through 1.4) could exhibit the kinds of confusing behaviors described in my example
and the language spec did not make guarantees about how programmers could avoid them.

http://bit.ly/PJUG2013-JLS-17
http://bit.ly/PJUG2013-JLS-17

Two Audiences

• Compiler, JVM, and class library authors

• Java Memory Model

• “Concurrency Assembly Language”

• All the rest of us

• Class Library

• Idioms, patterns, and new languages

*
Monday, December 30, 13

I.e. the language designers have two audiences: those who actually rely on the language spec, and those who
use the language.

Example Rules from JMM

“All memory operations prior to
writing a volatile variable on one
thread happen-before a read of the
same volatile from another thread.”

“Stmt-1 happens-before stmt-2 if
stmt-1 precedes stmt-2 in program
order.” [Note: this is “the intuitive
rule of program order”]

It’s a Tufte Nightmare! (Too many words.) Sorry!
Monday, December 30, 13

This is for the low level audience, e.g. compiler authors.

Modified Example 1

void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

First CPU (“thread”) Second CPU

volatile int a, b, x, y; // all 0

Monday, December 30, 13

This code is just example 1 but modified with a volatile declaration.

Another View
void m1() {
 y = a;
 b = 1;
}

void m2() {
 x = b;
 a = 2;
}

Happens-BeforeHappens-Before

Happens-BeforeHappens-Before

Happens-before is transitive, so if (y = a) hb (b = 1)
and (b = 1) hb (x = b), then (y = a) hb (x = b).

Monday, December 30, 13

There are two relevant happens-before operations. Nothing stops m2() from executing first and capturing either y
= a or nothing at all from m1(). But if m2() sees b == 1, it *must* also see y = a, and hence the counterintuitive
non-SC execution ordering is prevented.

Result

a = 2

x = b

b = 1

y = a

CPU 2

CPU 1

Cannot
OccurThe two happens-

before operations
mean that if CPU 2
observes b = 1, it must
also observe y = a.

This rules out the non-
SC trace.

*
Monday, December 30, 13

The compiler and runtime must cooperate to ensure the hardware does not execute a non-SC trace. More
properly, the hardware must not make the non-SC behavior visible to any software.

JMM Guarantee

• JMM rule: when one thread writes data
another will read, a happens-before
must separate the write and read.

• Java programs that follow the rule are
sequentially consistent.

• Otherwise, the program is said to have a
data race.

• Programmer’s task is to avoid data races.

Examples 1 and 2 contain data races.
Monday, December 30, 13

We can say: “A sequentially consistent program contains no data races.”

What Does Volatile Do?

• Cause javac to avoid reordering
optimizations, so preventing Example 1.

• Generated bytecode does not change

• JIT sees volatile annotation on variables
and generates machine-specific barrier
instructions to prevent Example 2.

• Also, mutex implementation must cause
execution of machine-specific barriers.

http://bit.ly/PJUG2013-Memory-Barriers
Monday, December 30, 13

The focus on “volatile” here is, again, just an example. Acquiring and releasing a lock has the same effect on
memory visibility, so long as the “other” thread synchronizes on the same lock.

http://bit.ly/PJUG2013-Memory-Barriers
http://bit.ly/PJUG2013-Memory-Barriers

For the Rest of Us

• Idioms

• E.g. Initialization on demand holder
(http://bit.ly/PJUG2013-Holder)

• Patterns

• Proper construction, publication, etc.

• New technology

• Languages, Frameworks, Java 8, etc.

Monday, December 30, 13

http://bit.ly/PJUG2013-Holder
http://bit.ly/PJUG2013-Holder

Key Patterns

• Proper Construction

• Immutability

• Safe Publication

• Concurrent Collections

• Documentation

• Doing it yourself: volatile,
synchronized, etc.

Java Concurrency in Practice: http://jcip.net
Monday, December 30, 13

http://jcip.net
http://jcip.net

Proper Construction

• The closing curly brace of a constructor
is a special point in program execution.

• this object must never be published
before its constructor is complete

• Traditional fail: event registration

• Common remedy: static factory
method

Monday, December 30, 13

When a class instance creates and starts a thread, the thread often has some ref to the class that created it.
Executor framework may solve the problem for threads, but then it’s likely the task will have a reference to its
creating class instead.

Immutability

• Immutable object = all fields final and no
way to modify state of contained
objects.

• Properly constructed immutable objects
are thread safe

• May be passed between threads “willy
nilly”

Monday, December 30, 13

Safe Publication

• Create object in static initializer

• Hold ref in volatile or AtomicReference

• Hold ref in final field of some other
properly constructed object

• Pass ref through a field guarded by a lock
(e.g. a synchronized accessor)

There Are Only Four Ways To Do It.
Monday, December 30, 13

Important note: the last bullet (field guarded by a lock) includes publishing the object by placing it in any kind of
properly-synchronized collection or holder.

Use the Class Library

• Learn what’s in java.util.concurrent!

• Use concurrent collections for safe
publication.

• Do not roll your own operations similar
to the ones offered by atomics

Monday, December 30, 13

Documentation

• Some widely-used libraries and
frameworks handle this badly

• Describe thread safety of each class
and/or method in Javadoc

• Use JSR-305 or similar annotations if
they are available to you.

Monday, December 30, 13

Doing It Yourself

• Use volatile (or atomicType) for single
items of state

• Same memory visibility guarantees

• Use atomic if methods are helpful

• Intrinsic locking (synchronized) when
multiple items must be kept consistent

• Threads must refer to the same volatile
or lock.

http://bit.ly/PJUG2013-FAQ *
Monday, December 30, 13

http://bit.ly/PJUG2013-FAQ
http://bit.ly/PJUG2013-FAQ

New JVM Languages

• Scala

• Functional language on JVM

• Potentially huge advantages

• Scala dev team must deal with JMM

• Java 8 (not a new language exactly)

• Closures, streams, Spliterators, etc

http://bit.ly/PJUG2013-Scala-Issue
Monday, December 30, 13

http://bit.ly/PJUG2013-Scala-Issue
http://bit.ly/PJUG2013-Scala-Issue

New JVM Frameworks

• Example: Akka

• Actor (event) framework on JVM

• Beautiful docs about memory model:
http://bit.ly/PJUG2013-Akka-Jmm

• Dalvik (Android “Java” virtual machine)

• History of issues - maybe better now

• Details: http://bit.ly/PJUG2013-Dalvik

Mention of Akka is an example. There are many others.
Monday, December 30, 13

http://bit.ly/PJUG2013-Akka-Jmm
http://bit.ly/PJUG2013-Akka-Jmm
http://bit.ly/PJUG2013-Dalvik
http://bit.ly/PJUG2013-Dalvik

Non-JVM Languages

• C

• You’re on your own. Distinct compile
and runtime tools. Example follows.

• C++

• Developing (have?) a memory model

• C#

• Similar to Java, but docs don’t allow
for a precise comparison

Monday, December 30, 13

“You’re on your own” is not intended as a criticism or slam (some of my best friends are C programmers). ;-)
Correctness in C requires more knowledge of low level details than Java. But the robustness of the Linux kernel
shows that high quality implementations are possible.

Explicit Control in C

• Compiler directives/annotations to
prevent aggressive compiler reordering

• Linux kernel: macros expand to explicit
memory barrier instructions

http://bit.ly/PJUG2013-C-Linux-Example

void m1(void) {
 stmt-1;
 stmt-2;
 smp_mb();
}

Monday, December 30, 13

http://bit.ly/PJUG2013-C-Linux-Example
http://bit.ly/PJUG2013-C-Linux-Example

And More Languages

• Go

• Memory model uses terminology and
concepts from JMM

• http://bit.ly/PJUG2013-Go-MM

• Rust? Objective C? GPU code?

• Left as exercise for the reader. ;-)

Monday, December 30, 13

http://bit.ly/PJUG2013-Go-MM
http://bit.ly/PJUG2013-Go-MM

Summary

• These issues affect all languages that
support programming with threads

• Java community was ahead of the curve
in addressing them

• Awareness wins - you may not program
against the JMM, but understanding it is
powerful.

• Keep learning - avoid “DIY” and use the
highest level tools you can.

Monday, December 30, 13

References

http://bitly.com/bundles/pdxjjb/2

Contains all the “bit.ly” links
from this presentation

Monday, December 30, 13

There are some links in the bit.ly bundle that didn’t make it into any slide.

http://bitly.com/bundles/pdxjjb/2
http://bitly.com/bundles/pdxjjb/2

THANK YOU

• Java Agent team and so many others at
New Relic for attending my practice
talks and providing feedback

Monday, December 30, 13

Q&A

Followed By

Implementation of the
Asynchronous Hopped

Products Pattern

Monday, December 30, 13

